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Abstract In this paper, we first establish the existence theorems of the solution of hybrid
inclusion and disclusion systems, from which we study mixed types of systems of generalized
quasivariational inclusion and disclusion problems and systems of generalized vector quasi-
equilibrium problems. Some applications of existence theorems to feasible points for various
mathematical programs with variational constraints or equilibrium constraints, system of
vector saddle point and system of minimax theorem are also given.
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1 Introduction

Let X be a nonempty subset of a topological space (t.s., for short) and f : X × X → R a func-
tion with f (x, x) ≥ 0 for all x ∈ X . Then the scalar equilibrium problem (EP, for short) [5] is
to find x̄ ∈ X such that f (x̄, y) ≥ 0 for all y ∈ X . The equilibrium problem was extensively
investigated and generalized to the vector equilibrium problems for single-valued or multi-
valued maps and contains optimization problems, variational inequalities problems, saddle
point problems, the Nash equilibrium problems, fixed point problems, complementary prob-
lems, bilevel problems and semi-infinite problems as special cases and have some applications
in mathematical program with equilibrium constraint; for detail one can refer to [1,2,6,7,9–
21,23] and references therein.

In 1979, Rubinov [22] studied the following variational inclusions problem (R):

Given x ∈ R
n , find y ∈ R

m such that 0 ∈ g(x, y) + Q(x, y), (R)
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where g : R
n × R

m → R
p is a single-valued function and Q : R

n × R
m � R

p is a
multivalued map. It is known that model (R) covers variational inequalities problems and a
number of variational system to many applications. Since then various types of variational
inclusions problems have been extended and generalized by Adly [1], Ahmad et al. [2], Ding
[8] and Huang [10], etc. Recently, Mordukhovich [21] discussed the following problem:

min
(x,y)

ϕ(x, y), subject to y ∈ S(x), x ∈ X,

where S : X � Y is given by S(x) = {y ∈ Y : 0 ∈ g(x, y) + Q(x, y)} and X ⊆ R
n ,

Y ⊆ R
m and ϕ : X × Y → R

s , and also study the optimal conditions of this type of
problem.

Recently, Lin [14,15,18,19] studied the existence theorems of systems of generalized var-
iational inclusion and disclusion problems. By these results, he established some existence
theorems of solutions of nonlinear problems; e.g. systems of generalized vector quasiequi-
librium problem, collective variational fixed point, systems of generalized quasi-loose saddle
point, systems of minimax theorem, mathematical program with systems of variational inclu-
sions constraints, mathematical program with systems of equilibrium constraints, etc.

Motivated and inspired by the works mentioned above, in this paper we shall introduce
and investigate the following new problem. Let I be any index set. For each i ∈ I , let Yi be a
nonempty closed convex subset of a Hausdorff topological vector space (t.v.s., for short) Vi ,
Hi ⊆ Yi , Y = ∏

i∈I Yi , Ai : Y � Yi and Ti : Y � Yi multivalued maps. The mathematical
model about hybrid inclusion and disclusion systems (HIDS, for short) is defined as follows:

(HIDS) Find v = (v)i∈I ∈ Y such that vi ∈ Hi and

yi /∈ Ai (v) for all yi ∈ Ti (v) and for all i ∈ I.

In fact, HIDS contains several important problems as special cases. We first give some exam-
ples in this section to interpret our idea and the usefulness of the theory and then explain how
they correlate to some applications (see Sects. 3, 4).

Let X be a nonempty subset of a topological space E and u ∈ X be given. For each i ∈ I ,
let Ui and Zi be real t.v.s. with zero vectors θUi and θZi , respectively.

Example (A) For each i ∈ I , let Fi : X × Yi � Ui and Gi : X × Y × Yi � Zi be
multivalued maps with nonempty values. If Hi and Ai are defined as follows:

Hi = {yi ∈ Yi : θUi /∈ Fi (u, yi )}
and

Ai (y) = {zi ∈ Yi : θZi /∈ Gi (u, y, zi )},
then HIDS will reduce to the following system of mixed type of parametric
variational inclusion and disclusion problem (P1):

(P1) Find v = (v)i∈I ∈ Y such that θUi /∈ Fi (u, vi ) and θZi ∈ Gi (u, v, yi )

for all yi ∈ Ti (v) and for all i ∈ I .

Example (B) For each i ∈ I , let Fi : X × Yi � Ui and Gi : X × Y × Yi � Zi be
multivalued maps with nonempty values and Ci and Di be nonempty subsets
of Ui and Zi , respectively. If Hi and Ai are defined as follows:

Hi = {yi ∈ Yi : Fi (u, yi ) ∩ (−Ci ) = ∅}
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and

Ai (y) = {zi ∈ Yi : Gi (u, y, zi ) ∩ (−Di \ {θZi }) �= ∅},
then HIDS will reduce to the following problem (P2), which is an abstract
equilibrium problem:

(P2) Find v = (v)i∈I ∈ Y such that Fi (u, vi )∩(−Ci ) = ∅ and Gi (u, v, yi )

∩ (−Di \ {θZi }) = ∅ for all yi ∈ Ti (v) and for all i ∈ I .

Example (C) For each i ∈ I , let Fi : Yi � Yi and Gi : Y × Yi � Y be multivalued maps.
If Hi and Ai are defined as follows:

Hi = {yi ∈ Yi : yi ∈ Fi (yi )}
and

Ai (y) = {zi ∈ Yi : y /∈ Gi (y, zi )},
then HIDS will reduce to the following fixed point problem (P3).

(P3) Find v = (v)i∈I ∈ Y such that vi ∈ Fi (vi ) and v ∈ Gi (v, yi ) for all
yi ∈ Ti (v) for all i ∈ I ;

Example (D) For each i ∈ I , let Fi : X × Yi → R and Gi : X × Y × Yi → R be functions.
If Hi and Ai are defined as following:

Hi = {yi ∈ Yi : Fi (u, yi ) ≤ 0}
and

Ai (y) = {zi ∈ Yi : Gi (u, y, zi ) ≤ 0},
then HIDS will reduce to the following system of hybrid scalar equilibrium
problem (P4):

(P4) Find v = (v)i∈I ∈ Y such that Fi (u, vi ) ≤ 0 and Gi (u, v, yi ) > 0
for all yi ∈ Ti (v) and for all i ∈ I ;

Example (E) Let X be a nonempty Hausdorff t.v.s., f : X → (−∞,∞] and p : X × X →
(−∞,∞] be functions, ε > 0 and u ∈ X be given. If H and A are defined as
follows:

H = {x ∈ X : εp(u, x) ≤ f (u) − f (x)}
and

A(x) = {y ∈ X : εp(x, y) < f (x) − f (y)},
then HIDS will reduce to Lin and Du’s variant of Ekeland’s variational prin-
ciple in t.v.s.; see [15,17] (say problem (P5)):

(P5) Find v ∈ X such that
(a) εp(u, v) ≤ f (u) − f (v);
(b) εp(v, x) ≥ f (v) − f (x) for all x ∈ X .
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The paper is divided into five sections. In Sect. 3, we first establish the existence theorems
of the solution of HIDS, from which we study mixed types of systems of generalized quasi-
variational inclusions and disclusions problems and give some applications to the existence
theorems of feasible points for various mathematical programs with variational constraints or
equilibrium constraints, the existence theorems of system of vector saddle point and system
of minimax theorem in Sect. 4.

2 Preliminaries

Throughout this paper we denote by R and N the set of real numbers and the set of positive
integers, respectively. Let A and B be nonempty sets. A multivalued map T : A � B is
a function from A to the power set 2B of B. We denote T (A) = ⋃{T (x) : x ∈ A} and
let T − : B � A be defined by the condition that x ∈ T −(y) if and only if y ∈ T (x).
Recall that a nonempty subset C of a linear space X with its zero vector θX is called a con-
vex cone if C + C ⊆ C and λC ⊆ C for all λ ≥ 0. A convex cone C in X is pointed if
C ∩ (−C) = {θX }. Let X and Y be t.s. A multivalued map T : X � Y is said to be (1) upper
semicontinuous (u.s.c., for short) at x ∈ X if for every open set V in Y with T (x) ⊂ V , there
exists an open neighborhood U (x) of x such that T (x ′) ⊂ V for all x ′ ∈ U (x) ; (2) lower
semicontinuous (l.s.c., for short) at x ∈ X if for every open set V in Y with T (x)

⋂
V �= ∅,

there exists an open neighborhood U (x) of x such that T (x ′)
⋂

V �= ∅ for all x ′ ∈ U (x);
(3) u.s.c. (resp. l.s.c.) on X if T is u.s.c. (resp. l.s.c.) at every point of X ; (4) closed if
GrT = {(x, y) : x ∈ X, y ∈ T (x)}, the graph of T , is closed in X × Y ; (5) compact if there
exists a compact set K such that T (X) ⊆ K .

Let Z be a real t.v.s. with its zero vector θZ , D a proper convex cone in Z and A ⊆ Z .
A point ȳ ∈ A is called a vectorial minimal point of A with respect to D if for any y ∈ A,
y − ȳ /∈ −D \ {θZ }. The set of vectorial minimal point of A is denoted by MinD A. The
convex hull of A and the closure of A are denoted by coA and cl A, respectively.

Definition 2.1 Let X be a nonempty convex subset of a vector space E , Y a nonempty con-
vex subset of a vector space V and Z a real t.v.s. Let F : X × Y � Z and C : X � Z be
multivalued maps such that for each x ∈ X , C(x) is a nonempty closed convex cone. For
each fixed x ∈ X , y � F(x, y) is called C(x)-quasiconvex (resp. C(x)-quasiconvex-like)
if for any y1, y2 ∈ Y and λ ∈ [0, 1], we have either

F(x, y1) ⊆ F(x, λy1 + (1 − λ)y2) + C(x)

(resp. F(x, λy1 + (1 − λ)y2) ⊆ F(x, y1) − C(x))

or

F(x, y2) ⊆ F(x, λy1 + (1 − λ)y2) + C(x)

(resp. F(x, λy1 + (1 − λ)y2) ⊆ F(x, y2) − C(x)).

The following Lemmas are crucial in this paper.

Lemma 2.1 [3,23] Let X and Y be Hausdorff topological spaces and T : X � Y a multi-
valued map. Then T is l.s.c. at x ∈ X if and only if for any y ∈ T (x) and for any net {xα} in
X converging to x , there exists a subnet {xφ(λ)}λ∈� of {xα} and a net {yλ}λ∈� with yλ → y
such that yλ ∈ T (xφ(λ)) for all λ ∈ �.
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Lemma 2.2 [20] Let Z be a Hausdorff t.v.s. and C be a closed convex cone in Z. If A is a
nonempty compact subset of Z, then MinC A �= ∅.

Lemma 2.3 [4] Let X and Y be Hausdorff topological spaces and T : X � Y a multi-
valued map.

(i) If T is an u.s.c. multivalued map with closed values, then T is closed;
(ii) If Y is a compact space and T is closed, then T is u.s.c.;

(iii) If X is compact and T is an u.s.c. multivalued map with compact values, then T (X) is
compact.

3 Existence theorems of the solution of HIDS

The following result is needed in this paper.

Theorem 3.1 [7,15,17] Let I be any index set. Let {Xi }i∈I be a family of nonempty convex
subsets, where each Xi is contained in a Hausdorff t.v.s. Ei . For each i ∈ I , let Si : X =∏

i∈I Xi � Xi be a multivalued map such that

(i) for each x = (xi )i∈I ∈ X, xi /∈ coSi (x);
(ii) for each yi ∈ Xi , S−

i (yi ) is open in X;
(iii) there exist a nonempty compact subset K of X and a nonempty compact convex subset

Mi of Xi for all i ∈ I such that for each x ∈ X \ K , there exists j ∈ I such that
M j ∩ S j (x) �= ∅.

Then there exists x̄ ∈ X such that Si (x̄) = ∅ for all i ∈ I .

In this section, we first establish an existence theorem of the solution of HIDS which is one
of the main results of this paper.

Theorem 3.2 Let I be any index set. For each i ∈ I , let Yi be a nonempty closed convex
subset of a Hausdorff t.v.s. Vi . Let X be a nonempty subset of a topological space E and
Y = ∏

i∈I Yi . For each i ∈ I , let Ti : Y � Yi be a multivalued map with nonempty values.
Let u ∈ X. For each i ∈ I , let Hi be a nonempty closed subset of Yi and let Ai : Y � Yi be
a multivalued map. For each i ∈ I , suppose that the following conditions are satisfied:

(i) for each y = (yi )i∈I ∈ Y , yi /∈ Ai (y);
(ii) for each y ∈ Y , coTi (y) ⊆ Hi and Ai (y) is convex;

(iii) for each zi ∈ Yi , T −
i (zi ) and A−

i (zi ) are open in Y ;
(iv) there exist a nonempty compact subset K of Y and a nonempty compact convex sub-

set Mi of Yi for each i ∈ I such that for each y ∈ Y\K there exist j ∈ I and
z j ∈ M j ∩ Tj (y) ∩ A j (y).

Then there exists v = (vi )i∈I ∈ Y such that for each i ∈ I , vi ∈ Hi and yi /∈ Ai (v) for all
yi ∈ Ti (v).

Proof For each i ∈ I , let Wi = Hi × ∏
j �=i Y j . Then Wi is a nonempty closed subset of Y

for all i ∈ I . Define a multivalued map ϕi : Y � Yi by

ϕi (y) =
{

Ti (y) ∩ Ai (y), if y ∈ Wi

Ti (y), if y ∈ Y\Wi .
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Then for each i ∈ I , yi /∈ coϕi (y) for all y = (yi )i∈I ∈ Y . Indeed, for each i ∈ I , if y ∈ Wi ,
then ϕi (y) = Ti (y) ∩ Ai (y) ⊆ Ai (y). By (ii), we have coϕi (y) ⊆ Ai (y), which implies
yi /∈ coϕi (y) from (i). On the other hand, if y ∈ Y\Wi , then yi /∈ Hi . By (ii) again, we have
yi /∈ coTi (y) = coϕi (y). Hence for each i ∈ I , yi /∈ coϕi (y) for all y = (yi )i∈I ∈ Y . It is
easy to see that for each i ∈ I and zi ∈ Yi ,

ϕ−
i (zi ) = [

T −
i (zi ) ∩ A−

i (zi )
] ∪ [

(Y\Wi ) ∩ T −
i (zi )

]
.

Thus, from our hypothesis, ϕ−
i (zi ) is open in Y for each (i, zi ) ∈ I × Yi . By (iv), there

exist a nonempty compact subset K of Y and a nonempty compact convex subset Mi of Yi

for each i ∈ I such that for each y ∈ Y\K there exist j ∈ I , such that M j ∩ ϕ j (y) �= ∅.
Applying Theorem 3.1, there exists v ∈ Y such that ϕi (v) = ∅ for all i ∈ I . If v /∈ Wi , then
∅ �= Ti (v) = ϕi (v) = ∅, which leads to a contradiction. Hence v ∈ Wi and yi /∈ Ai (v) for
all yi ∈ Ti (v). Therefore there exists v = (vi )i∈I ∈ Y such that for each i ∈ I , vi ∈ Hi and
yi /∈ Ai (v) for all yi ∈ Ti (v). �
Remark 3.1 Theorem 3.2 gives sufficient conditions for the existence of the solution of HIDS.

Below, unless otherwise specified in this section, we shall assume that I , Yi , Vi , X , E , Y
and Ti are the same as in Theorem 3.2 and Ui and Zi real t.v.s. with zero vectors θUi and θZi ,
respectively.

Theorem 3.3 For each i ∈ I , let Ni : X ×Yi � Ui , Fi : X ×Yi � Ui , Gi : X ×Y ×Yi �
Zi multivalued maps with nonempty values and Oi a nonempty open set in Zi . Let u ∈ X be
given. For each i ∈ I , let Hi = {yi ∈ Yi : θUi ∈ Fi (u, yi ) + Ni (u, yi )} (resp. Hi = {yi ∈
Yi : θUi /∈ Fi (u, yi ) + Ni (u, yi )}). For each i ∈ I , suppose that

(i) Hi is a nonempty closed subset of Yi ;
(ii) for each y = (yi )i∈I ∈ Y , θZi /∈ Gi (u, y, yi ) + Oi ;

(iii) for each y ∈ Y , coTi (y) ⊆ Hi and for each zi ∈ Yi , T −
i (zi ) is open in Y ;

(iv) for each y ∈ Y , Gi (u, y, ·) is {θZi } -quasiconvex and for each zi ∈ Yi , Gi (u, ·, zi ) is
l.s.c.;

(v) there exist a nonempty compact subset K of Y and a nonempty compact convex subset Mi

of Yi for each i ∈ I such that for each y ∈ Y\K there exist j ∈ I and z j ∈ M j ∩ Tj (y)

such that θZ j ∈ G j (u, y, z j ) + O j .

Then there exists v = (vi )i∈I ∈ Y such that for each i ∈ I ,

θUi ∈ Fi (u, vi ) + Ni (u, vi ) (resp. θUi /∈ Fi (u, vi ) + Ni (u, vi ))

and

θZi /∈ Gi (u, v, yi ) + Oi

for all yi ∈ Ti (v).

Proof For each i ∈ I , let Ai : Y � Yi be defined by

Ai (y) = {zi ∈ Yi : θZi ∈ Gi (u, y, zi ) + Oi }.
We claim that for each (i, zi ) ∈ I ×Yi , A−

i (zi ) is open in Y . Let y ∈ cl(Y\A−
i (zi )) . Then there

exists a net {yα}α∈� in Y\A−
i (zi ) such that yα → y. Thus we have θZi /∈ Gi (u, yα, zi )+ Oi

or Gi (u, yα, zi ) ⊆ Zi\Oi . By the closedness of Y , y ∈ Y . Also, we obtain Gi (u, y, zi ) ⊆
Zi\Oi . Indeed, for any w ∈ Gi (u, y, zi ), since Gi (u, ·, zi ) is l.s.c. at y and yα → y, by
Lemma 2.1, there exists a net {wα} with wα → w such that wα ∈ Gi (u, yα, zi ) ⊆ Zi\Oi .
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Since Zi\Oi is closed, we have w ∈ Zi\Oi and hence Gi (u, y, zi ) ⊆ Zi\Oi . Therefore, y ∈
Y\A−

i (zi ) and hence A−
i (zi ) is open in Y . Next, we show that for each (i, y) ∈ I ×Y , Ai (y) is

convex. Let ai , bi ∈ Ai (y). Then θZi ∈ Gi (u, y, ai )+Oi and θZi ∈ Gi (u, y, bi )+Oi . By the

convexity of Yi , e(λ)
i := λai + (1 − λ)bi ∈ Yi , for all λ ∈ [0, 1]. Suppose to the contrary that

there exists λ0 ∈ (0, 1) such that θZi /∈ Gi

(
u, y, e(λ0)

i

)
+ Oi . By the {θZi }-quasiconvexity

of Gi (u, y, ·), either

θZi ∈ Gi (u, y, ai ) + Oi ⊆ Gi

(
u, y, e(λ0)

i

)
+ Oi

or

θZi ∈ Gi (u, y, bi ) + Oi ⊆ Gi

(
u, y, e(λ0)

i

)
+ Oi ,

which leads to a contradiction. Hence for each (i, y) ∈ I × Y , Ai (y) is convex. Therefore,
all the conditions of Theorem 3.2 are satisfied and the conclusion follows from Theorem 3.2

�
Remark 3.2 Let X and Y be t.v.s., U a real t.v.s. with its zero vector θ and u ∈ X .

(a) Let C �= {θ} be a point convex cone in Y and F : X × Y � U a multivalued map
defined by F(u, y) = θ for all y ∈ Y . Then H1 = {y ∈ Y : θ ∈ F(u, y)} = Y and
H2 = {y ∈ Y : F(u, y) ⊆ C} = Y are closed;

(b) Let C �= {θ} be a point convex cone in Y . If a multivalued map F : X × Y � U is
defined by F(u, y) = C\{θ}, then H3 = {y ∈ Y : θ /∈ F(u, y)} = Y and H4 = {y ∈
Y : F(u, y) � C} = Y are closed;

(c) Let F : X × Y � U be a multivalued map with nonempty values and C : X × Y � U
be a multivalued map with nonempty values such that y � C(u, y) is closed. If there
exists w = w(u) ∈ Y such that F(u, w) ⊆ C(u, w) and F(u, ·) is l.s.c., then H = {y ∈
Y : F(u, y) ⊆ C(u, y)} is a nonempty closed subset of Y ;

(d) Let F : X × Y � U be a multivalued map with nonempty values such that there exists
w = w(u) ∈ Y such that θ ∈ F(u, w) and the map y � F(u, y) is closed. Then
H = {y ∈ Y : θ ∈ F(u, y)} is a nonempty closed subset of Y .

Subsequently, we establish some existence theorems of systems of generalized vector
quasiequilibrium problems.

Theorem 3.4 For each i ∈ I , let Ci : X × Yi � Ui , Di : X × Y � Zi , Fi : X × Yi � Ui ,
Gi : X × Y × Yi � Zi and Ti : Y � Yi be multivalued maps with nonempty values.
Let u ∈ X. For each i ∈ I , let Hi = {yi ∈ Yi : Fi (u, yi ) ∩ (−Ci (u, yi )) = ∅} (resp.
Hi = {yi ∈ Yi : Fi (u, yi ) ∩ (−Ci (u, yi )) �= ∅}). For each i ∈ I , suppose that

(i) Hi is a nonempty closed subset of Yi ;
(ii) for each y = (yi )i∈I ∈ Y , Gi (u, y, yi ) ∩ (−Di (u, y)\{θZi }) = ∅;

(iii) Ri : Y � Zi is closed, where Ri (y) = Zi\(−Di (u, y)\{θZi }) for y ∈ Y ;
(iv) for each y ∈ Y , coTi (y) ⊆ Hi and for each zi ∈ Yi , T −

i (zi ) is open in Y ;
(v) for each y ∈ Y , Di (u, y) is a nonempty convex cone and Di (u, y) �= {θZi };

(vi) for each y ∈ Y , Gi (u, y, ·) is Di (u, y) -quasiconvex and for each zi ∈ Yi , Gi (u, ·, zi )

is l.s.c.;
(vii) there exist a nonempty compact subset K of Y and a nonempty compact convex subset

Mi of Yi for each i ∈ I such that for each y ∈ Y\K there exist j ∈ I and z j ∈ M j ∩Tj (y)

such that G j (u, y, z j ) ∩ (−D j (u, y)\{θZ j }) �= ∅.
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Then there exists v = (vi )i∈I ∈ Y such that for each i ∈ I ,

Fi (u, vi ) ∩ (−Ci (u, vi )) = ∅ (resp. Fi (u, vi ) ∩ (−Ci (u, vi )) �= ∅)

and

Gi (u, v, yi ) ∩ (−Di (u, v)\{θZi }) = ∅
for all yi ∈ Ti (v).

Proof For each i ∈ I , let Ai : Y � Yi be defined by

Ai (y) = {zi ∈ Yi : Gi (u, y, zi ) ∩ (−Di (u, y)\{θZi }) �= ∅}.
We first show that for each (i, zi ) ∈ I ×Yi , A−

i (zi ) is open in Y . Let y ∈ cl(Y\A−
i (zi )). Then

there exists a net {yα}α∈� in Y\A−
i (zi ) such that yα → y. Thus we have Gi (u, yα, zi ) ∩

(−Di (u, yα)\{θi }) = ∅ or Gi (u, yα, zi ) ⊆ Ri (yα). By the closedness of Y , y ∈ Y . Also,
we obtain Gi (u, y, zi ) ⊆ Ri (y). Indeed, for any w ∈ Gi (u, y, zi ) , since Gi (u, ·, zi ) is l.s.c.
at y and yα → y, by Lemma 2.1, there exists a net {wα} with wα → w such that wα ∈
Gi (u, yα, zi ) ⊆ Ri (yα). Since Ri is closed, we have w ∈ Ri (y). Thus Gi (u, y, zi ) ⊆ Ri (y).
Therefore y ∈ Y\A−

i (zi ) and hence A−
i (zi ) is open in Y . Next, we claim that for each (i, y) ∈

I × Y , Ai (y) is convex. Let ai , bi ∈ Ai (y). Then Gi (u, y, ai ) ∩ (−Di (u, y)\{θZi }) �= ∅
and Gi (u, y, bi ) ∩ (−Di (u, y)\{θZi }) �= ∅. By the convexity of Yi , e(λ)

i := λai + (1 −
λ)bi ∈ Yi , for all λ ∈ [0, 1]. Suppose to the contrary that there exists λ0 ∈ (0, 1) such that

Gi

(
u, y, e(λ0)

i

)
∩ (−Di (u, y)\{θZi }) = ∅. By the Di (u, y)-quasiconvexity of Gi (u, y, ·),

either

Gi (u, y, ai ) ∩ (−Di (u, y)\{θZi })
⊆

[
Gi

(
u, y, e(λ0)

i

)
+ Di (u, y)

]
∩ (−Di (u, y)\{θZi }) = ∅

or

Gi (u, y, bi ) ∩ (−Di (u, y)\{θZi })
⊆

[
Gi

(
u, y, e(λ0)

i

)
+ Di (u, y)

]
∩ (−Di (u, y)\{θZi }) = ∅.

This leads to a contradiction. Hence for each (i, y) ∈ I ×Y , Ai (y) is convex. For each i ∈ I ,
let F

′
i (x, yi ) = Fi (x, yi ) + Ci (x, yi ) and G

′
i (x, y, zi ) = Gi (x, y, zi ) + (Di (x, y)\{θZi }).

Therefore all the conditions of Theorem 3.3 are satisfied and the conclusion follows from
Theorem 3.3 �

Following a similar argument as in Theorem 3.4, we have the following result.

Theorem 3.5 In Theorem 3.4 , if Hi = {yi ∈ Yi : Fi (u, yi ) ∩ (−intCi (u, yi )) = ∅} (resp.
Hi = {yi ∈ Yi : Fi (u, yi ) ∩ (−intCi (u, yi )) �= ∅}) and conditions (ii), (iii) and (vii) are
replaced by (ii)a, (iii)a and (vii)a respectively, where

(ii)a for each y = (yi )i∈I ∈ Y , Gi (u, y, yi ) ∩ (−int Di (u, y)) = ∅;
(iii)a Ri : Y � Zi is closed, where Ri (y) = Zi\(−int Di (u, y)) for y ∈ Y ;
(vii)a there exist a nonempty compact subset K of Y and a nonempty compact convex sub-

set Mi of Yi for each i ∈ I such that for each y ∈ Y\K there exist j ∈ I and
z j ∈ M j ∩ Tj (y) such that G j (u, y, z j ) ∩ (−int D j (u, y)) �= ∅.
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Then there exists v = (vi )i∈I ∈ Y such that for each i ∈ I ,

Fi (u, vi ) ∩ (−intCi (u, vi )) = ∅ (resp. Fi (u, vi ) ∩ (−intCi (u, vi )) �= ∅)

and

Gi (u, v, yi ) ∩ (−int Di (u, v)) = ∅
for all yi ∈ Ti (v).

4 Some applications

By using Theorem 3.3, we can prove an existence theorem of system of vector saddle point.

Theorem 4.1 Let n ∈ N and I = {1, 2, . . . , n}. For each i ∈ I , let Xi be a nonempty closed
convex subset of a Hausdorff t.v.s. Vi , Zi real t.v.s. with zero vector θZi and Li : Xi ×Xi → Zi

a map. Let X = ∏
i∈I Xi and let u = (u1, . . . , un) ∈ X be given. For each i ∈ I , let Ci be

a nonempty proper convex cone in Zi such that Zi\(−Ci\{θZi }) is closed. Suppose that

(i) for each xi ∈ Xi , yi → Li (xi , yi ) is continuous and {θZi }-quasiconvex;
(ii) for each yi ∈ Xi , xi → Li (xi , yi ) is {θZi }-quasiconvex-like;

(iii) [Li (ui , yi ) − Li (yi , yi )] /∈ (−Ci\{θZi }) for all yi ∈ Xi ;
(iv) Suppose that there exist a nonempty compact subset K of X and a nonempty compact

convex subset Mi of Xi for each i ∈ I such that for each y = (yi )i∈I ∈ X\K there
exist j ∈ I and z j ∈ M j such that [L j (u j , z j ) − L j (u j , y j )] /∈ (−C j\{θZ j }) and
[L j (u j , y j ) − L j (z j , y j )] /∈ (−C j\{θ j }).

Then there exists v = (vi )i∈I ∈ X such that for each i ∈ I ,

[Li (ui , yi ) − Li (ui , vi )] /∈ (−Ci\{θZi })
and

[Li (ui , vi ) − Li (yi , vi )] /∈ (−Ci\{θZi })
for all yi ∈ Xi .

Proof Put X ′
2k−1 = X ′

2k = Xk , C ′
2k−1 = C ′

2k = Ck , L ′
2k−1 = L ′

2k = Lk and u′
2k−1 = u′

2k =
uk for each k ∈ I . Let J = {1, 2, . . . , 2n}. For each i ∈ J , let Y ′

i = X ′
i and X ′ = Y ′ =∏

i∈J X ′
i . Then u′ := (u′

1, u′
2, . . . , u′

2n) ∈ X ′. For each i ∈ J , define Fi : X ′ × X ′
i → Zi by

Fi (x, yi ) = C ′
i\{θZi }. Thus

Hi = {x ′
i ∈ X ′

i : θZi /∈ Fi (u
′, x ′

i )} = X ′
i .

For each i ∈ J , let Ti : X ′ � X ′
i by

Ti (y) = Hi = X ′
i for each y ∈ X ′ ⇐⇒ T −

i (zi ) = X ′
i for each zi ∈ X ′

i .

Then for each (i, y) ∈ J × X ′, coTi (y) ⊆ Hi = X ′
i and for each (i, zi ) ∈ J × X ′

i , T −
i (zi ) is

open in X ′. For each i ∈ J , define fi : X ′ × X ′ × X ′
i → Zi by

fi (x, y, zi ) = L ′
i (xi , yi ) − L ′

i (zi , yi ),

and define gi : X ′ × X ′ × X ′
i → Zi by

gi (x, y, zi ) = L ′
i (xi , zi ) − L ′

i (xi , yi ).
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For each k ∈ N, let G2k−1 = fk and G2k = gk . Then for each i ∈ J , Gi : X ′× X ′× X ′
i → Zi

is a map such that for each y = (yi )i∈I ∈ X ′, Gi (u′, y, yi ) /∈ (−Ci\{θZi }) from (iii). For
each i ∈ J , we claim that Gi (u′, y, ·) is C ′

i -quasiconvex for each y ∈ X ′. Let z1
i , z2

i ∈ X ′
i

and λ ∈ [0, 1]. By the {θZi }-quasiconvexity of L ′
i (xi , ·), either

L ′
i

(
xi , λz1

i + (1 − λ)z2
i

) = L ′
i

(
xi , z1

i

)

or

L ′
i

(
xi , λz1

i + (1 − λ)z2
i

) = L ′
i

(
xi , z2

i

)
.

By (ii), we have either

L ′
i

(
λz1

i + (1 − λ)z2
i , yi

) = L ′
i

(
z1

i , yi
)

or

L ′
i

(
λz1

i + (1 − λ)z2
i , yi

) = L ′
i

(
z2

i , yi
)
.

Hence either

fi
(
x, y, z1

i

) = L ′
i (xi , yi ) − L ′

i

(
z1

i , yi
)

= L ′
i (xi , yi ) − L ′

i

(
λz1

i + (1 − λ)z2
i , yi

)

⊆ fi
(
x, y, λz1

i + (1 − λ)z2
i

) + C ′
i

or

fi
(
x, y, z2

i

) ⊆ fi
(
x, y, λz1

i + (1 − λ)z2
i

) + C ′
i .

Also, we have either

gi
(
x, y, z1

i

) ⊆ gi
(
x, y, λz1

i + (1 − λ)z2
i

) + C ′
i

or

gi
(
x, y, z2

i

) ⊆ gi
(
x, y, λz1

i + (1 − λ)z2
i

) + C ′
i .

So for each i ∈ J , Gi (u′, y, ·) is C ′
i -quasiconvex for each y ∈ X ′. Since for each xi ∈

Xi , yi → Li (xi , yi ) is continuous, we have fi (u′, y, zi ) = L ′
i

(
u′

i , yi
) − L ′

i (zi , yi ) and
gi (u′, y, zi ) = L ′

i

(
u′

i , zi
) − L ′

i

(
u′

i , yi
)

are l.s.c. for each zi ∈ X ′
i . Hence for each i ∈ J ,

Gi (u′, ·, zi ) is l.s.c. for each zi ∈ X ′
i . By Theorem 3.3, there exists v = (vi )i∈J ∈ X ′ such

that for each i ∈ J , Gi (u′, v, yi ) /∈ (−Ci\{θZi }) for all yi ∈ X ′
i , which is equivalent with

for each i ∈ I ,

[Li (ui , yi ) − Li (ui , vi )] /∈ (−Ci\{θZi })
and

[Li (ui , vi ) − Li (yi , vi )] /∈ (−Ci\{θZi })
for all yi ∈ Xi . �

The following new system of minimax theorem is immediate from Theorem 4.1
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Theorem 4.2 (System of minimax theorem) Let n ∈ N and I = {1, 2, . . . , n}. For each i ∈
I , let Xi be a nonempty closed convex subset of a Hausdorff t.v.s. Vi and Li : Xi × Xi → R

a function. Let X = ∏
i∈I Xi and let u = (u1, . . . , un) ∈ X be given. Suppose that

(i) for each xi ∈ Xi , yi → Li (xi , yi ) is continuous and {0}-quasiconvex;
(ii) for each yi ∈ Xi , xi → Li (xi , yi ) is {0}-quasiconvex-like;

(iii) Li (ui , yi ) ≥ Li (yi , yi ) for all yi ∈ Xi ;
(iv) there exist a nonempty compact subset K of X and a nonempty compact convex subset

Mi of Xi for each i ∈ I such that for each y = (yi )i∈I ∈ X\K there exist j ∈ I and
z j ∈ M j such that L j (u j , z j ) ≥ L j (u j , y j ) and L j (u j , y j ) ≥ L j (z j , y j ).

Then for each i ∈ I , supxi ∈Xi
inf yi ∈Xi Li (xi , yi ) = inf yi ∈Xi supxi ∈Xi

Li (xi , yi ).

Proof For each i ∈ I , let Ci = [0,∞). By Theorem 4.1, there exists v = (vi )i∈I ∈ X such
that for each i ∈ I ,

Li (ui , yi ) ≥ Li (ui , vi )

and

Li (ui , vi ) ≥ Li (yi , vi )

for all yi ∈ Xi . It follows that

sup
xi ∈Xi

inf
yi ∈Xi

Li (xi , yi ) ≥ Li (ui , vi ) ≥ inf
yi ∈Xi

sup
xi ∈Xi

Li (xi , yi )

and hence

sup
xi ∈Xi

inf
yi ∈Xi

Li (xi , yi ) = inf
yi ∈Xi

sup
xi ∈Xi

Li (xi , yi ).

�
The following results are existence theorems of feasible points for mathematical programs

with equilibrium constraints.

Theorem 4.3 For each i ∈ I , let fi : X × Yi → (−∞,∞] and gi : X × Y × Yi →
(−∞,∞] be functions, Ti : Y � Yi be a multivalued map with nonempty values, and let
Hi = {yi ∈ Yi : fi (u, yi ) ≤ 0}, where y = (yi )i∈I ∈ Y . Let u ∈ X . For each i ∈ I , suppose
that there exists wi ∈ Yi such that fi (u, wi ) ≤ 0. For each i ∈ I , suppose that

(i) fi (u, ·) is l.s.c.;
(ii) for each y = (yi )i∈I ∈ Y , gi (u, y, yi ) ≥ 0;

(iii) for each y ∈ Y , coTi (y) ⊆ Hi and for each zi ∈ Yi , T −
i (zi ) is open in Y ;

(iv) gi (u, ·, ·) is u.s.c. and for each y ∈ Y , gi (u, y, ·) is quasiconvex;
(v) there exist a nonempty compact subset K of Y and a nonempty compact convex subset Mi

of Yi for each i ∈ I such that for each y ∈ Y\K there exist j ∈ I and z j ∈ M j ∩ Tj (y)

such that g j (u, y, z j ) < 0.

Let h : X ×Y � Z0 be a multivalued map such that y � h(u, y) is an u.s.c. multivalued
map with nonempty compact values, where Z0 is a real t.v.s. ordered by a proper closed
convex cone C in Z0 . Then there exists an optimal solution to the following problem (P):
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MinC h(u, y)

object to y ∈ Y, fi (u, yi ) ≤ 0 and gi (u, y, zi ) ≥ 0
for all zi ∈ Ti (y) and for all i ∈ I .

(P)

Proof For each i ∈ I , let

Ni = {y ∈ Y : fi (u, yi ) ≤ 0 and gi (u, y, zi ) ≥ 0 for all zi ∈ Ti (y)}.
For each i ∈ I , let yi ∈ cl Ni . Then there exists a net {yα

i }α∈� in Ni such that yα
i → yi .

Hence fi
(
u, yα

i

) ≤ 0 and gi
(
u, yα

i , zi
) ≥ 0 for all zi ∈ Ti

(
yα

i

)
. Let ai ∈ Ti (y). Since

T −
i (zi ) is open in Y for each zi ∈ Yi , Ti is l.s.c. Hence there exists a net {aα

i }α∈� with
aα

i → ai such that aα
i ∈ Ti

(
yα

i

)
. So fi

(
u, yα

i

) ≤ 0 and gi
(
u, yα

i , aα
i

) ≥ 0. By (i), we have
fi (u, yi ) ≤ 0. By (iv), we have gi (u, yi , ai ) ≥ 0. Hence yi ∈ Ni and Ni is a closed set in Y .
Let N = ∩i∈I Ni . Then N is closed in Y . Applying Theorem 3.2, N �= ∅. By (v), it is easy
to see that N ⊆ K , where K is a nonempty compact subset of Y in condition (v). Hence N
is a nonempty compact subset of Y . Since the map y � h(u, y) is an u.s.c. multivalued map
with nonempty compact values, it follows from Lemma 2.3 that h(u, N ) is compact. Then
by Lemma 2.2 that MinC h(u, N ) �= ∅. That is there exists a solution to the problem (P).
The proof is completed. �
Theorem 4.4 In Theorem 4.3, if we assume that h : X × Y → (−∞,∞] is a l.s.c. function,
then there exists an optimal solution to the problem (P) as in Theorem 4.3

Proof Let N be the same as in the proof of Theorem 4.3 By the lower semicontinuity of h
and the compactness of N , there exists v ∈ N such that h(u, v) = min h(u, N ). The proof is
completed. �

Let X be a t.v.s. Recall that a function p : X × X → (−∞,∞] is called a quasi-distance
[17] on X if the following are satisfied:

(Q D1) p(x, x) ≥ 0 for all x ∈ X ;
(Q D2) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X ;
(Q D3) for any x ∈ X , p(x, ·) is convex and l.s.c.;
(Q D4) for any y ∈ X , p(·, y) is u.s.c.

Lin and Du’s variant of Ekeland’s variational principle [17] for quasi-distances in a
Hausdorff t.v.s. can be easily given by Theorem 3.2

Theorem 4.5 ([17], Theorem 4.1) Let X be a Hausdorff t.v.s. Let f : X → (−∞,∞] be a
l.s.c. and convex function and p : X × X → (−∞,∞] be a quasi-distance. Let u ∈ X with
p(u, u) = 0 and ε > 0. Suppose that there exist a nonempty compact subset K of X and a
nonempty compact convex subset M of X such that for each y ∈ X\K there exists z ∈ M
such that εp(u, z) ≤ f (u) − f (z) and εp(y, z) < f (y) − f (z). Then there exists v ∈ X
such that

(i) εp(u, v) ≤ f (u) − f (v);
(ii) εp(v, x) ≥ f (v) − f (x) for all x ∈ X.

Proof Since p is a quasi-distance, εp is also a quasi-distance. Define H and A : X � X by

H = {x ∈ X : εp(u, x) ≤ f (u) − f (x)}
and

A(x) = {y ∈ X : εp(x, y) < f (x) − f (y)},
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respectively, and let T : X � X be defined by

T (x) = H for all x ∈ X

⇐⇒ T −(z) =
{

X, if z ∈ H
∅, if z ∈ X \ H.

It is not hard to verify that all the conditions of Theorem 3.2 are satisfied. Thus there exists
v ∈ X such that

(i) εp(u, v) ≤ f (u) − f (v);
(ii) εp(v, x) ≥ f (v) − f (x) for all x ∈ H .

For any x ∈ X\H , since

ε[p(u, v) + p(v, x)] ≥ εp(u, x)

> f (u) − f (x)

≥ εp(u, v) + f (v) − f (x),

it follows that εp(v, x) > f (v)− f (x) for all x ∈ X\H . Therefore εp(v, x) ≥ f (v)− f (x)

for all x ∈ X . The proof is completed. �

5 Conclusions

In the present paper, we first introduce the new mathematical model about HIDS which con-
tains several important problems (see Sect. 1) as special cases in the literatures. We establish
sufficient conditions for the existence of the solution of HIDS and study mixed types of
systems of generalized quasivariational inclusions and disclusions problems and systems of
generalized vector quasiequilibrium problems. Some applications to the existence theorems
of feasible points for various mathematical programs with variational constraints or equi-
librium constraints, the existence theorems of system of vector saddle point and system of
minimax theorem are also given. Our method would be useful to improve and generalize a
number of other known results; see e.g., [1,2,6–11,13–15,17–21].
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