Hybrid inclusion and disclusion systems with applications to equilibria and parametric optimization

Wei-Shih Du

Received: 19 August 2008 / Accepted: 20 July 2009 / Published online: 1 August 2009
© Springer Science+Business Media, LLC. 2009

Abstract

In this paper, we first establish the existence theorems of the solution of hybrid inclusion and disclusion systems, from which we study mixed types of systems of generalized quasivariational inclusion and disclusion problems and systems of generalized vector quasiequilibrium problems. Some applications of existence theorems to feasible points for various mathematical programs with variational constraints or equilibrium constraints, system of vector saddle point and system of minimax theorem are also given.

Keywords Hybrid inclusion and disclusion system • Equilibrium problem • Lin and Du's variant of Ekeland's variational principle • Quasivariational inclusion and disclusion problem • Vector saddle point theorem • Minimax theorem

1 Introduction

Let X be a nonempty subset of a topological space (t.s., for short) and $f: X \times X \rightarrow \mathbb{R}$ a function with $f(x, x) \geq 0$ for all $x \in X$. Then the scalar equilibrium problem ($E P$, for short) [5] is to find $\bar{x} \in X$ such that $f(\bar{x}, y) \geq 0$ for all $y \in X$. The equilibrium problem was extensively investigated and generalized to the vector equilibrium problems for single-valued or multivalued maps and contains optimization problems, variational inequalities problems, saddle point problems, the Nash equilibrium problems, fixed point problems, complementary problems, bilevel problems and semi-infinite problems as special cases and have some applications in mathematical program with equilibrium constraint; for detail one can refer to [1,2,6,7,921,23] and references therein.

In 1979, Rubinov [22] studied the following variational inclusions problem (R) :

$$
\begin{equation*}
\text { Given } x \in \mathbb{R}^{n} \text {, find } y \in \mathbb{R}^{m} \text { such that } 0 \in g(x, y)+Q(x, y) \text {, } \tag{R}
\end{equation*}
$$

[^0][^1]where $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is a single-valued function and $Q: \mathbb{R}^{n} \times \mathbb{R}^{m} \multimap \mathbb{R}^{p}$ is a multivalued map. It is known that model (R) covers variational inequalities problems and a number of variational system to many applications. Since then various types of variational inclusions problems have been extended and generalized by Adly [1], Ahmad et al. [2], Ding [8] and Huang [10], etc. Recently, Mordukhovich [21] discussed the following problem:
$$
\min _{(x, y)} \varphi(x, y), \text { subject to } y \in S(x), x \in X,
$$
where $S: X \multimap Y$ is given by $S(x)=\{y \in Y: 0 \in g(x, y)+Q(x, y)\}$ and $X \subseteq \mathbb{R}^{n}$, $Y \subseteq \mathbb{R}^{m}$ and $\varphi: X \times Y \rightarrow \mathbb{R}^{s}$, and also study the optimal conditions of this type of problem.

Recently, $\operatorname{Lin}[14,15,18,19]$ studied the existence theorems of systems of generalized variational inclusion and disclusion problems. By these results, he established some existence theorems of solutions of nonlinear problems; e.g. systems of generalized vector quasiequilibrium problem, collective variational fixed point, systems of generalized quasi-loose saddle point, systems of minimax theorem, mathematical program with systems of variational inclusions constraints, mathematical program with systems of equilibrium constraints, etc.

Motivated and inspired by the works mentioned above, in this paper we shall introduce and investigate the following new problem. Let I be any index set. For each $i \in I$, let Y_{i} be a nonempty closed convex subset of a Hausdorff topological vector space (t.v.s., for short) V_{i}, $H_{i} \subseteq Y_{i}, Y=\prod_{i \in I} Y_{i}, A_{i}: Y \multimap Y_{i}$ and $T_{i}: Y \multimap Y_{i}$ multivalued maps. The mathematical model about hybrid inclusion and disclusion systems (HIDS, for short) is defined as follows:
(HIDS) Find $v=(v)_{i \in I} \in Y$ such that $v_{i} \in H_{i}$ and

$$
y_{i} \notin A_{i}(v) \text { for all } y_{i} \in T_{i}(v) \text { and for all } i \in I .
$$

In fact, HIDS contains several important problems as special cases. We first give some examples in this section to interpret our idea and the usefulness of the theory and then explain how they correlate to some applications (see Sects. 3, 4).

Let X be a nonempty subset of a topological space E and $u \in X$ be given. For each $i \in I$, let U_{i} and Z_{i} be real t.v.s. with zero vectors $\theta_{U_{i}}$ and $\theta_{Z_{i}}$, respectively.

Example (A) For each $i \in I$, let $F_{i}: X \times Y_{i} \multimap U_{i}$ and $G_{i}: X \times Y \times Y_{i} \multimap Z_{i}$ be multivalued maps with nonempty values. If H_{i} and A_{i} are defined as follows:

$$
H_{i}=\left\{y_{i} \in Y_{i}: \theta_{U_{i}} \notin F_{i}\left(u, y_{i}\right)\right\}
$$

and

$$
A_{i}(y)=\left\{z_{i} \in Y_{i}: \theta_{Z_{i}} \notin G_{i}\left(u, y, z_{i}\right)\right\},
$$

then HIDS will reduce to the following system of mixed type of parametric variational inclusion and disclusion problem (P_{1}):
$\left(P_{1}\right)$ Find $v=(v)_{i \in I} \in Y$ such that $\theta_{U_{i}} \notin F_{i}\left(u, v_{i}\right)$ and $\theta_{Z_{i}} \in G_{i}\left(u, v, y_{i}\right)$ for all $y_{i} \in T_{i}(v)$ and for all $i \in I$.

Example (B) For each $i \in I$, let $F_{i}: X \times Y_{i} \multimap U_{i}$ and $G_{i}: X \times Y \times Y_{i} \multimap Z_{i}$ be multivalued maps with nonempty values and C_{i} and D_{i} be nonempty subsets of U_{i} and Z_{i}, respectively. If H_{i} and A_{i} are defined as follows:

$$
H_{i}=\left\{y_{i} \in Y_{i}: F_{i}\left(u, y_{i}\right) \cap\left(-C_{i}\right)=\emptyset\right\}
$$

and

$$
A_{i}(y)=\left\{z_{i} \in Y_{i}: G_{i}\left(u, y, z_{i}\right) \cap\left(-D_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right) \neq \emptyset\right\}
$$

then HIDS will reduce to the following problem $\left(P_{2}\right)$, which is an abstract equilibrium problem:
$\left(P_{2}\right)$ Find $v=(v)_{i \in I} \in Y$ such that $F_{i}\left(u, v_{i}\right) \cap\left(-C_{i}\right)=\emptyset$ and $G_{i}\left(u, v, y_{i}\right)$ $\cap\left(-D_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)=\emptyset$ for all $y_{i} \in T_{i}(v)$ and for all $i \in I$.

Example (C) For each $i \in I$, let $F_{i}: Y_{i} \multimap Y_{i}$ and $G_{i}: Y \times Y_{i} \multimap Y$ be multivalued maps. If H_{i} and A_{i} are defined as follows:

$$
H_{i}=\left\{y_{i} \in Y_{i}: y_{i} \in F_{i}\left(y_{i}\right)\right\}
$$

and

$$
A_{i}(y)=\left\{z_{i} \in Y_{i}: y \notin G_{i}\left(y, z_{i}\right)\right\}
$$

then HIDS will reduce to the following fixed point problem $\left(P_{3}\right)$.
$\left(P_{3}\right)$ Find $v=(v)_{i \in I} \in Y$ such that $v_{i} \in F_{i}\left(v_{i}\right)$ and $v \in G_{i}\left(v, y_{i}\right)$ for all $y_{i} \in T_{i}(v)$ for all $i \in I$;

Example (D) For each $i \in I$, let $F_{i}: X \times Y_{i} \rightarrow \mathbb{R}$ and $G_{i}: X \times Y \times Y_{i} \rightarrow \mathbb{R}$ be functions. If H_{i} and A_{i} are defined as following:

$$
H_{i}=\left\{y_{i} \in Y_{i}: F_{i}\left(u, y_{i}\right) \leq 0\right\}
$$

and

$$
A_{i}(y)=\left\{z_{i} \in Y_{i}: G_{i}\left(u, y, z_{i}\right) \leq 0\right\}
$$

then HIDS will reduce to the following system of hybrid scalar equilibrium problem (P_{4}):
$\left(P_{4}\right)$ Find $v=(v)_{i \in I} \in Y$ such that $F_{i}\left(u, v_{i}\right) \leq 0$ and $G_{i}\left(u, v, y_{i}\right)>0$ for all $y_{i} \in T_{i}(v)$ and for all $i \in I$;

Example (E) Let X be a nonempty Hausdorff t.v.s., $f: X \rightarrow(-\infty, \infty]$ and $p: X \times X \rightarrow$ $(-\infty, \infty]$ be functions, $\varepsilon>0$ and $u \in X$ be given. If H and A are defined as follows:

$$
H=\{x \in X: \varepsilon p(u, x) \leq f(u)-f(x)\}
$$

and

$$
A(x)=\{y \in X: \varepsilon p(x, y)<f(x)-f(y)\},
$$

then HIDS will reduce to Lin and Du's variant of Ekeland's variational principle in t.v.s.; see [15,17] (say problem $\left(P_{5}\right)$):
(P_{5}) Find $v \in X$ such that
(a) $\varepsilon p(u, v) \leq f(u)-f(v)$;
(b) $\varepsilon p(v, x) \geq f(v)-f(x)$ for all $x \in X$.

The paper is divided into five sections. In Sect. 3, we first establish the existence theorems of the solution of HIDS, from which we study mixed types of systems of generalized quasivariational inclusions and disclusions problems and give some applications to the existence theorems of feasible points for various mathematical programs with variational constraints or equilibrium constraints, the existence theorems of system of vector saddle point and system of minimax theorem in Sect. 4.

2 Preliminaries

Throughout this paper we denote by \mathbb{R} and \mathbb{N} the set of real numbers and the set of positive integers, respectively. Let A and B be nonempty sets. A multivalued map $T: A \multimap B$ is a function from A to the power set 2^{B} of B. We denote $T(A)=\bigcup\{T(x): x \in A\}$ and let $T^{-}: B \multimap A$ be defined by the condition that $x \in T^{-}(y)$ if and only if $y \in T(x)$. Recall that a nonempty subset C of a linear space X with its zero vector θ_{X} is called a convex cone if $C+C \subseteq C$ and $\lambda C \subseteq C$ for all $\lambda \geq 0$. A convex cone C in X is pointed if $C \cap(-C)=\left\{\theta_{X}\right\}$. Let X and Y be t.s. A multivalued map $T: X \multimap Y$ is said to be (1) upper semicontinuous (u.s.c., for short) at $x \in X$ if for every open set V in Y with $T(x) \subset V$, there exists an open neighborhood $U(x)$ of x such that $T\left(x^{\prime}\right) \subset V$ for all $x^{\prime} \in U(x)$; (2) lower semicontinuous (1.s.c., for short) at $x \in X$ if for every open set V in Y with $T(x) \cap V \neq \emptyset$, there exists an open neighborhood $U(x)$ of x such that $T\left(x^{\prime}\right) \bigcap V \neq \emptyset$ for all $x^{\prime} \in U(x)$; (3) u.s.c. (resp. 1.s.c.) on X if T is u.s.c. (resp. 1.s.c.) at every point of X; (4) closed if $\operatorname{Gr} T=\{(x, y): x \in X, y \in T(x)\}$, the graph of T, is closed in $X \times Y$; (5) compact if there exists a compact set K such that $T(X) \subseteq K$.

Let Z be a real t.v.s. with its zero vector θ_{Z}, D a proper convex cone in Z and $A \subseteq Z$. A point $\bar{y} \in A$ is called a vectorial minimal point of A with respect to D if for any $y \in A$, $y-\bar{y} \notin-D \backslash\left\{\theta_{Z}\right\}$. The set of vectorial minimal point of A is denoted by $\operatorname{Min}_{D} A$. The convex hull of A and the closure of A are denoted by $\operatorname{co} A$ and $c l A$, respectively.

Definition 2.1 Let X be a nonempty convex subset of a vector space E, Y a nonempty convex subset of a vector space V and Z a real t.v.s. Let $F: X \times Y \multimap Z$ and $C: X \multimap Z$ be multivalued maps such that for each $x \in X, C(x)$ is a nonempty closed convex cone. For each fixed $x \in X, y \multimap F(x, y)$ is called $C(x)$-quasiconvex (resp. $C(x)$-quasiconvex-like) if for any $y_{1}, y_{2} \in Y$ and $\lambda \in[0,1]$, we have either

$$
\begin{aligned}
F\left(x, y_{1}\right) & \subseteq F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)+C(x) \\
\left(\operatorname{resp} . F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)\right. & \left.\subseteq F\left(x, y_{1}\right)-C(x)\right)
\end{aligned}
$$

or

$$
\begin{aligned}
F\left(x, y_{2}\right) & \subseteq F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)+C(x) \\
\left(\operatorname{resp} . F\left(x, \lambda y_{1}+(1-\lambda) y_{2}\right)\right. & \left.\subseteq F\left(x, y_{2}\right)-C(x)\right) .
\end{aligned}
$$

The following Lemmas are crucial in this paper.

Lemma 2.1 [3,23] Let X and Y be Hausdorff topological spaces and $T: X \multimap Y$ a multivalued map. Then T is l.s.c. at $x \in X$ if and only if for any $y \in T(x)$ and for any net $\left\{x_{\alpha}\right\}$ in X converging to x, there exists a subnet $\left\{x_{\phi(\lambda)}\right\}_{\lambda \in \Lambda}$ of $\left\{x_{\alpha}\right\}$ and a net $\left\{y_{\lambda}\right\}_{\lambda \in \Lambda}$ with $y_{\lambda} \rightarrow y$ such that $y_{\lambda} \in T\left(x_{\phi(\lambda)}\right)$ for all $\lambda \in \Lambda$.

Lemma 2.2 [20] Let Z be a Hausdorff t.v.s. and C be a closed convex cone in Z. If A is a nonempty compact subset of Z, then $\operatorname{Min}_{C} A \neq \emptyset$.

Lemma 2.3 [4] Let X and Y be Hausdorff topological spaces and $T: X \multimap Y$ a multivalued map.
(i) If T is an u.s.c. multivalued map with closed values, then T is closed;
(ii) If Y is a compact space and T is closed, then T is u.s.c.;;
(iii) If X is compact and T is an u.s.c. multivalued map with compact values, then $T(X)$ is compact.

3 Existence theorems of the solution of HIDS

The following result is needed in this paper.
Theorem 3.1 [7,15,17] Let I be any index set. Let $\left\{X_{i}\right\}_{i \in I}$ be a family of nonempty convex subsets, where each X_{i} is contained in a Hausdorff t.v.s. E_{i}. For each $i \in I$, let $S_{i}: X=$ $\prod_{i \in I} X_{i} \multimap X_{i}$ be a multivalued map such that
(i) for each $x=\left(x_{i}\right)_{i \in I} \in X, x_{i} \notin \operatorname{coS}(x)$;
(ii) for each $y_{i} \in X_{i}, S_{i}^{-}\left(y_{i}\right)$ is open in X;
(iii) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for all $i \in I$ such that for each $x \in X \backslash K$, there exists $j \in I$ such that $M_{j} \cap S_{j}(x) \neq \emptyset$.

Then there exists $\bar{x} \in X$ such that $S_{i}(\bar{x})=\emptyset$ for all $i \in I$.
In this section, we first establish an existence theorem of the solution of HIDS which is one of the main results of this paper.

Theorem 3.2 Let I be any index set. For each $i \in I$, let Y_{i} be a nonempty closed convex subset of a Hausdorff t.v.s. V_{i}. Let X be a nonempty subset of a topological space E and $Y=\prod_{i \in I} Y_{i}$. For each $i \in I$, let $T_{i}: Y \multimap Y_{i}$ be a multivalued map with nonempty values. Let $u \in X$. For each $i \in I$, let H_{i} be a nonempty closed subset of Y_{i} and let $A_{i}: Y \multimap Y_{i}$ be a multivalued map. For each $i \in I$, suppose that the following conditions are satisfied:
(i) for each $y=\left(y_{i}\right)_{i \in I} \in Y, y_{i} \notin A_{i}(y)$;
(ii) for each $y \in Y, \operatorname{coT}_{i}(y) \subseteq H_{i}$ and $A_{i}(y)$ is convex;
(iii) for each $z_{i} \in Y_{i}, T_{i}^{-}\left(z_{i}\right)$ and $A_{i}^{-}\left(z_{i}\right)$ are open in Y;
(iv) there exist a nonempty compact subset K of Y and a nonempty compact convex subset M_{i} of Y_{i} for each $i \in I$ such that for each $y \in Y \backslash K$ there exist $j \in I$ and $z_{j} \in M_{j} \cap T_{j}(y) \cap A_{j}(y)$.

Then there exists $v=\left(v_{i}\right)_{i \in I} \in Y$ such that for each $i \in I, v_{i} \in H_{i}$ and $y_{i} \notin A_{i}(v)$ for all $y_{i} \in T_{i}(v)$.

Proof For each $i \in I$, let $W_{i}=H_{i} \times \prod_{j \neq i} Y_{j}$. Then W_{i} is a nonempty closed subset of Y for all $i \in I$. Define a multivalued map $\varphi_{i}: Y \multimap Y_{i}$ by

$$
\varphi_{i}(y)= \begin{cases}T_{i}(y) \cap A_{i}(y), & \text { if } y \in W_{i} \\ T_{i}(y), & \text { if } y \in Y \backslash W_{i} .\end{cases}
$$

Then for each $i \in I, y_{i} \notin \operatorname{co\varphi } \varphi_{i}(y)$ for all $y=\left(y_{i}\right)_{i \in I} \in Y$. Indeed, for each $i \in I$, if $y \in W_{i}$, then $\varphi_{i}(y)=T_{i}(y) \cap A_{i}(y) \subseteq A_{i}(y)$. By (ii), we have $\operatorname{co\varphi }_{i}(y) \subseteq A_{i}(y)$, which implies $y_{i} \notin \operatorname{co\varphi } \varphi_{i}(y)$ from (i). On the other hand, if $y \in Y \backslash W_{i}$, then $y_{i} \notin H_{i}$. By (ii) again, we have $y_{i} \notin \operatorname{co} T_{i}(y)=\operatorname{co\varphi }(y)$. Hence for each $i \in I, y_{i} \notin \operatorname{co\varphi } \varphi_{i}(y)$ for all $y=\left(y_{i}\right)_{i \in I} \in Y$. It is easy to see that for each $i \in I$ and $z_{i} \in Y_{i}$,

$$
\varphi_{i}^{-}\left(z_{i}\right)=\left[T_{i}^{-}\left(z_{i}\right) \cap A_{i}^{-}\left(z_{i}\right)\right] \cup\left[\left(Y \backslash W_{i}\right) \cap T_{i}^{-}\left(z_{i}\right)\right] .
$$

Thus, from our hypothesis, $\varphi_{i}^{-}\left(z_{i}\right)$ is open in Y for each $\left(i, z_{i}\right) \in I \times Y_{i}$. By (iv), there exist a nonempty compact subset K of Y and a nonempty compact convex subset M_{i} of Y_{i} for each $i \in I$ such that for each $y \in Y \backslash K$ there exist $j \in I$, such that $M_{j} \cap \varphi_{j}(y) \neq \emptyset$. Applying Theorem 3.1, there exists $v \in Y$ such that $\varphi_{i}(v)=\emptyset$ for all $i \in I$. If $v \notin W_{i}$, then $\emptyset \neq T_{i}(v)=\varphi_{i}(v)=\emptyset$, which leads to a contradiction. Hence $v \in W_{i}$ and $y_{i} \notin A_{i}(v)$ for all $y_{i} \in T_{i}(v)$. Therefore there exists $v=\left(v_{i}\right)_{i \in I} \in Y$ such that for each $i \in I, v_{i} \in H_{i}$ and $y_{i} \notin A_{i}(v)$ for all $y_{i} \in T_{i}(v)$.

Remark 3.1 Theorem 3.2 gives sufficient conditions for the existence of the solution of HIDS.
Below, unless otherwise specified in this section, we shall assume that I, Y_{i}, V_{i}, X, E, Y and T_{i} are the same as in Theorem 3.2 and U_{i} and Z_{i} real t.v.s. with zero vectors $\theta_{U_{i}}$ and $\theta_{Z_{i}}$, respectively.

Theorem 3.3 For each $i \in I$, let $N_{i}: X \times Y_{i} \multimap U_{i}, F_{i}: X \times Y_{i} \multimap U_{i}, G_{i}: X \times Y \times Y_{i} \multimap$ Z_{i} multivalued maps with nonempty values and O_{i} a nonempty open set in Z_{i}. Let $u \in X$ be given. For each $i \in I$, let $H_{i}=\left\{y_{i} \in Y_{i}: \theta_{U_{i}} \in F_{i}\left(u, y_{i}\right)+N_{i}\left(u, y_{i}\right)\right\}$ (resp. $H_{i}=\left\{y_{i} \in\right.$ $\left.\left.Y_{i}: \theta_{U_{i}} \notin F_{i}\left(u, y_{i}\right)+N_{i}\left(u, y_{i}\right)\right\}\right)$. For each $i \in I$, suppose that
(i) H_{i} is a nonempty closed subset of Y_{i};
(ii) for each $y=\left(y_{i}\right)_{i \in I} \in Y, \theta_{Z_{i}} \notin G_{i}\left(u, y, y_{i}\right)+O_{i}$;
(iii) for each $y \in Y, \operatorname{coT} T_{i}(y) \subseteq H_{i}$ and for each $z_{i} \in Y_{i}, T_{i}^{-}\left(z_{i}\right)$ is open in Y;
(iv) for each $y \in Y, G_{i}(u, y, \cdot)$ is $\left\{\theta_{Z_{i}}\right\}$-quasiconvex and for each $z_{i} \in Y_{i}, G_{i}\left(u, \cdot, z_{i}\right)$ is l.s.c.;
(v) there exist a nonempty compact subset K of Y and a nonempty compact convex subset M_{i} of Y_{i} for each $i \in I$ such that for each $y \in Y \backslash K$ there exist $j \in I$ and $z_{j} \in M_{j} \cap T_{j}(y)$ such that $\theta_{Z_{j}} \in G_{j}\left(u, y, z_{j}\right)+O_{j}$.

Then there exists $v=\left(v_{i}\right)_{i \in I} \in Y$ such that for each $i \in I$,

$$
\theta_{U_{i}} \in F_{i}\left(u, v_{i}\right)+N_{i}\left(u, v_{i}\right)\left(\text { resp. } \theta_{U_{i}} \notin F_{i}\left(u, v_{i}\right)+N_{i}\left(u, v_{i}\right)\right)
$$

and

$$
\theta_{Z_{i}} \notin G_{i}\left(u, v, y_{i}\right)+O_{i}
$$

for all $y_{i} \in T_{i}(v)$.
Proof For each $i \in I$, let $A_{i}: Y \multimap Y_{i}$ be defined by

$$
A_{i}(y)=\left\{z_{i} \in Y_{i}: \theta_{Z_{i}} \in G_{i}\left(u, y, z_{i}\right)+O_{i}\right\} .
$$

We claim that for each $\left(i, z_{i}\right) \in I \times Y_{i}, A_{i}^{-}\left(z_{i}\right)$ is open in Y. Let $y \in \operatorname{cl}\left(Y \backslash A_{i}^{-}\left(z_{i}\right)\right)$. Then there exists a net $\left\{y_{\alpha}\right\}_{\alpha \in \Lambda}$ in $Y \backslash A_{i}^{-}\left(z_{i}\right)$ such that $y_{\alpha} \rightarrow y$. Thus we have $\theta_{Z_{i}} \notin G_{i}\left(u, y_{\alpha}, z_{i}\right)+O_{i}$ or $G_{i}\left(u, y_{\alpha}, z_{i}\right) \subseteq Z_{i} \backslash O_{i}$. By the closedness of $Y, y \in Y$. Also, we obtain $G_{i}\left(u, y, z_{i}\right) \subseteq$ $Z_{i} \backslash O_{i}$. Indeed, for any $w \in G_{i}\left(u, y, z_{i}\right)$, since $G_{i}\left(u, \cdot, z_{i}\right)$ is 1.s.c. at y and $y_{\alpha} \rightarrow y$, by Lemma 2.1, there exists a net $\left\{w_{\alpha}\right\}$ with $w_{\alpha} \rightarrow w$ such that $w_{\alpha} \in G_{i}\left(u, y_{\alpha}, z_{i}\right) \subseteq Z_{i} \backslash O_{i}$.

Since $Z_{i} \backslash O_{i}$ is closed, we have $w \in Z_{i} \backslash O_{i}$ and hence $G_{i}\left(u, y, z_{i}\right) \subseteq Z_{i} \backslash O_{i}$. Therefore, $y \in$ $Y \backslash A_{i}^{-}\left(z_{i}\right)$ and hence $A_{i}^{-}\left(z_{i}\right)$ is open in Y. Next, we show that for each $(i, y) \in I \times Y, A_{i}(y)$ is convex. Let $a_{i}, b_{i} \in A_{i}(y)$. Then $\theta_{Z_{i}} \in G_{i}\left(u, y, a_{i}\right)+O_{i}$ and $\theta_{Z_{i}} \in G_{i}\left(u, y, b_{i}\right)+O_{i}$. By the convexity of $Y_{i}, e_{i}^{(\lambda)}:=\lambda a_{i}+(1-\lambda) b_{i} \in Y_{i}$, for all $\lambda \in[0,1]$. Suppose to the contrary that there exists $\lambda_{0} \in(0,1)$ such that $\theta_{Z_{i}} \notin G_{i}\left(u, y, e_{i}^{\left(\lambda_{0}\right)}\right)+O_{i}$. By the $\left\{\theta_{Z_{i}}\right\}$-quasiconvexity of $G_{i}(u, y, \cdot)$, either

$$
\theta_{Z_{i}} \in G_{i}\left(u, y, a_{i}\right)+O_{i} \subseteq G_{i}\left(u, y, e_{i}^{\left(\lambda_{0}\right)}\right)+O_{i}
$$

or

$$
\theta_{Z_{i}} \in G_{i}\left(u, y, b_{i}\right)+O_{i} \subseteq G_{i}\left(u, y, e_{i}^{\left(\lambda_{0}\right)}\right)+O_{i}
$$

which leads to a contradiction. Hence for each $(i, y) \in I \times Y, A_{i}(y)$ is convex. Therefore, all the conditions of Theorem 3.2 are satisfied and the conclusion follows from Theorem 3.2

Remark 3.2 Let X and Y be t.v.s., U a real t.v.s. with its zero vector θ and $u \in X$.
(a) Let $C \neq\{\theta\}$ be a point convex cone in Y and $F: X \times Y \multimap U$ a multivalued map defined by $F(u, y)=\theta$ for all $y \in Y$. Then $H_{1}=\{y \in Y: \theta \in F(u, y)\}=Y$ and $H_{2}=\{y \in Y: F(u, y) \subseteq C\}=Y$ are closed;
(b) Let $C \neq\{\theta\}$ be a point convex cone in Y. If a multivalued map $F: X \times Y \multimap U$ is defined by $F(u, y)=C \backslash\{\theta\}$, then $H_{3}=\{y \in Y: \theta \notin F(u, y)\}=Y$ and $H_{4}=\{y \in$ $Y: F(u, y) \nsubseteq C\}=Y$ are closed;
(c) Let $F: X \times Y \multimap U$ be a multivalued map with nonempty values and $C: X \times Y \multimap U$ be a multivalued map with nonempty values such that $y \multimap C(u, y)$ is closed. If there exists $w=w(u) \in Y$ such that $F(u, w) \subseteq C(u, w)$ and $F(u, \cdot)$ is 1.s.c., then $H=\{y \in$ $Y: F(u, y) \subseteq C(u, y)\}$ is a nonempty closed subset of Y;
(d) Let $F: X \times Y \multimap U$ be a multivalued map with nonempty values such that there exists $w=w(u) \in Y$ such that $\theta \in F(u, w)$ and the map $y \multimap F(u, y)$ is closed. Then $H=\{y \in Y: \theta \in F(u, y)\}$ is a nonempty closed subset of Y.

Subsequently, we establish some existence theorems of systems of generalized vector quasiequilibrium problems.

Theorem 3.4 For each $i \in I$, let $C_{i}: X \times Y_{i} \multimap U_{i}, D_{i}: X \times Y \multimap Z_{i}, F_{i}: X \times Y_{i} \multimap U_{i}$, $G_{i}: X \times Y \times Y_{i} \multimap Z_{i}$ and $T_{i}: Y \multimap Y_{i}$ be multivalued maps with nonempty values. Let $u \in X$. For each $i \in I$, let $H_{i}=\left\{y_{i} \in Y_{i}: F_{i}\left(u, y_{i}\right) \cap\left(-C_{i}\left(u, y_{i}\right)\right)=\emptyset\right\}$ (resp. $\left.H_{i}=\left\{y_{i} \in Y_{i}: F_{i}\left(u, y_{i}\right) \cap\left(-C_{i}\left(u, y_{i}\right)\right) \neq \emptyset\right\}\right)$. For each $i \in I$, suppose that
(i) H_{i} is a nonempty closed subset of Y_{i};
(ii) for each $y=\left(y_{i}\right)_{i \in I} \in Y, G_{i}\left(u, y, y_{i}\right) \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right)=\emptyset$;
(iii) $R_{i}: Y \multimap Z_{i}$ is closed, where $R_{i}(y)=Z_{i} \backslash\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right)$ for $y \in Y$;
(iv) for each $y \in Y, \operatorname{coT}_{i}(y) \subseteq H_{i}$ and for each $z_{i} \in Y_{i}, T_{i}^{-}\left(z_{i}\right)$ is open in Y;
(v) for each $y \in Y, D_{i}(u, y)$ is a nonempty convex cone and $D_{i}(u, y) \neq\left\{\theta_{Z_{i}}\right\}$;
(vi) for each $y \in Y, G_{i}(u, y, \cdot)$ is $D_{i}(u, y)$-quasiconvex and for each $z_{i} \in Y_{i}, G_{i}\left(u, \cdot, z_{i}\right)$ is l.s.c.;
(vii) there exist a nonempty compact subset K of Y and a nonempty compact convex subset M_{i} of Y_{i} for each $i \in I$ such that for each $y \in Y \backslash K$ there exist $j \in I$ and $z_{j} \in M_{j} \cap T_{j}(y)$ such that $G_{j}\left(u, y, z_{j}\right) \cap\left(-D_{j}(u, y) \backslash\left\{\theta_{Z_{j}}\right\}\right) \neq \emptyset$.

Then there exists $v=\left(v_{i}\right)_{i \in I} \in Y$ such that for each $i \in I$,

$$
F_{i}\left(u, v_{i}\right) \cap\left(-C_{i}\left(u, v_{i}\right)\right)=\emptyset\left(\text { resp. } F_{i}\left(u, v_{i}\right) \cap\left(-C_{i}\left(u, v_{i}\right)\right) \neq \emptyset\right)
$$

and

$$
G_{i}\left(u, v, y_{i}\right) \cap\left(-D_{i}(u, v) \backslash\left\{\theta_{Z_{i}}\right\}\right)=\emptyset
$$

for all $y_{i} \in T_{i}(v)$.
Proof For each $i \in I$, let $A_{i}: Y \multimap Y_{i}$ be defined by

$$
A_{i}(y)=\left\{z_{i} \in Y_{i}: G_{i}\left(u, y, z_{i}\right) \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right) \neq \emptyset\right\} .
$$

We first show that for each $\left(i, z_{i}\right) \in I \times Y_{i}, A_{i}^{-}\left(z_{i}\right)$ is open in Y. Let $y \in \operatorname{cl}\left(Y \backslash A_{i}^{-}\left(z_{i}\right)\right)$. Then there exists a net $\left\{y_{\alpha}\right\}_{\alpha \in \Lambda}$ in $Y \backslash A_{i}^{-}\left(z_{i}\right)$ such that $y_{\alpha} \rightarrow y$. Thus we have $G_{i}\left(u, y_{\alpha}, z_{i}\right) \cap$ $\left(-D_{i}\left(u, y_{\alpha}\right) \backslash\left\{\theta_{i}\right\}\right)=\emptyset$ or $G_{i}\left(u, y_{\alpha}, z_{i}\right) \subseteq R_{i}\left(y_{\alpha}\right)$. By the closedness of $Y, y \in Y$. Also, we obtain $G_{i}\left(u, y, z_{i}\right) \subseteq R_{i}(y)$. Indeed, for any $w \in G_{i}\left(u, y, z_{i}\right)$, since $G_{i}\left(u, \cdot, z_{i}\right)$ is 1.s.c. at y and $y_{\alpha} \rightarrow y$, by Lemma 2.1, there exists a net $\left\{w_{\alpha}\right\}$ with $w_{\alpha} \rightarrow w$ such that $w_{\alpha} \in$ $G_{i}\left(u, y_{\alpha}, z_{i}\right) \subseteq R_{i}\left(y_{\alpha}\right)$. Since R_{i} is closed, we have $w \in R_{i}(y)$. Thus $G_{i}\left(u, y, z_{i}\right) \subseteq R_{i}(y)$. Therefore $y \in Y \backslash A_{i}^{-}\left(z_{i}\right)$ and hence $A_{i}^{-}\left(z_{i}\right)$ is open in Y. Next, we claim that for each $(i, y) \in$ $I \times Y, A_{i}(y)$ is convex. Let $a_{i}, b_{i} \in A_{i}(y)$. Then $G_{i}\left(u, y, a_{i}\right) \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{z_{i}}\right\}\right) \neq \emptyset$ and $G_{i}\left(u, y, b_{i}\right) \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{z_{i}}\right\}\right) \neq \emptyset$. By the convexity of $Y_{i}, e_{i}^{(\lambda)}:=\lambda a_{i}+(1-$ $\lambda) b_{i} \in Y_{i}$, for all $\lambda \in[0,1]$. Suppose to the contrary that there exists $\lambda_{0} \in(0,1)$ such that $G_{i}\left(u, y, e_{i}^{\left(\lambda_{0}\right)}\right) \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right)=\emptyset$. By the $D_{i}(u, y)$-quasiconvexity of $G_{i}(u, y, \cdot)$, either

$$
\begin{aligned}
& G_{i}\left(u, y, a_{i}\right) \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right) \\
& \quad \subseteq\left[G_{i}\left(u, y, e_{i}^{\left(\lambda_{0}\right)}\right)+D_{i}(u, y)\right] \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right)=\emptyset
\end{aligned}
$$

or

$$
\begin{aligned}
& G_{i}\left(u, y, b_{i}\right) \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right) \\
& \quad \subseteq\left[G_{i}\left(u, y, e_{i}^{\left(\lambda_{0}\right)}\right)+D_{i}(u, y)\right] \cap\left(-D_{i}(u, y) \backslash\left\{\theta_{Z_{i}}\right\}\right)=\emptyset .
\end{aligned}
$$

This leads to a contradiction. Hence for each $(i, y) \in I \times Y, A_{i}(y)$ is convex. For each $i \in I$, let $F_{i}^{\prime}\left(x, y_{i}\right)=F_{i}\left(x, y_{i}\right)+C_{i}\left(x, y_{i}\right)$ and $G_{i}^{\prime}\left(x, y, z_{i}\right)=G_{i}\left(x, y, z_{i}\right)+\left(D_{i}(x, y) \backslash\left\{\theta_{z_{i}}\right\}\right)$. Therefore all the conditions of Theorem 3.3 are satisfied and the conclusion follows from Theorem 3.3

Following a similar argument as in Theorem 3.4, we have the following result.
Theorem 3.5 In Theorem 3.4, if $H_{i}=\left\{y_{i} \in Y_{i}: F_{i}\left(u, y_{i}\right) \cap\left(-i n t C_{i}\left(u, y_{i}\right)\right)=\emptyset\right\}$ (resp. $\left.H_{i}=\left\{y_{i} \in Y_{i}: F_{i}\left(u, y_{i}\right) \cap\left(-\operatorname{int} C_{i}\left(u, y_{i}\right)\right) \neq \emptyset\right\}\right)$ and conditions (ii), (iii) and (vii) are replaced by $(\text { ii })_{a},(\text { iii })_{a}$ and $(\text { vii })_{a}$ respectively, where
(ii) ${ }_{\mathrm{a}}$ for each $y=\left(y_{i}\right)_{i \in I} \in Y, G_{i}\left(u, y, y_{i}\right) \cap\left(-\right.$ int $\left.D_{i}(u, y)\right)=\emptyset$;
(iii) $)_{\mathfrak{a}} R_{i}: Y \multimap Z_{i}$ is closed, where $R_{i}(y)=Z_{i} \backslash\left(-\right.$ int $\left.D_{i}(u, y)\right)$ for $y \in Y$;
(vii) $)_{\mathrm{a}}$ there exist a nonempty compact subset K of Y and a nonempty compact convex subset M_{i} of Y_{i} for each $i \in I$ such that for each $y \in Y \backslash K$ there exist $j \in I$ and $z_{j} \in M_{j} \cap T_{j}(y)$ such that $G_{j}\left(u, y, z_{j}\right) \cap\left(-\right.$ int $\left.D_{j}(u, y)\right) \neq \emptyset$.

Then there exists $v=\left(v_{i}\right)_{i \in I} \in Y$ such that for each $i \in I$,

$$
F_{i}\left(u, v_{i}\right) \cap\left(-\operatorname{int} C_{i}\left(u, v_{i}\right)\right)=\emptyset\left(\operatorname{resp} . F_{i}\left(u, v_{i}\right) \cap\left(-\operatorname{int} C_{i}\left(u, v_{i}\right)\right) \neq \emptyset\right)
$$

and

$$
G_{i}\left(u, v, y_{i}\right) \cap\left(-i n t D_{i}(u, v)\right)=\emptyset
$$

for all $y_{i} \in T_{i}(v)$.

4 Some applications

By using Theorem 3.3, we can prove an existence theorem of system of vector saddle point.
Theorem 4.1 Let $n \in \mathbb{N}$ and $I=\{1,2, \ldots, n\}$. For each $i \in I$, let X_{i} be a nonempty closed convex subset of a Hausdorfft.v.s. V_{i}, Z_{i} real t.v.s. with zero vector $\theta_{Z_{i}}$ and $L_{i}: X_{i} \times X_{i} \rightarrow Z_{i}$ a map. Let $X=\prod_{i \in I} X_{i}$ and let $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ be given. For each $i \in I$, let C_{i} be a nonempty proper convex cone in Z_{i} such that $Z_{i} \backslash\left(-C_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)$ is closed. Suppose that
(i) for each $x_{i} \in X_{i}, y_{i} \rightarrow L_{i}\left(x_{i}, y_{i}\right)$ is continuous and $\left\{\theta_{Z_{i}}\right\}$-quasiconvex;
(ii) for each $y_{i} \in X_{i}, x_{i} \rightarrow L_{i}\left(x_{i}, y_{i}\right)$ is $\left\{\theta_{Z_{i}}\right\}$-quasiconvex-like;
(iii) $\left[L_{i}\left(u_{i}, y_{i}\right)-L_{i}\left(y_{i}, y_{i}\right)\right] \notin\left(-C_{i} \backslash\left\{\theta_{z_{i}}\right\}\right)$ for all $y_{i} \in X_{i}$;
(iv) Suppose that there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for each $i \in I$ such that for each $y=\left(y_{i}\right)_{i \in I} \in X \backslash K$ there exist $j \in I$ and $z_{j} \in M_{j}$ such that $\left[L_{j}\left(u_{j}, z_{j}\right)-L_{j}\left(u_{j}, y_{j}\right)\right] \notin\left(-C_{j} \backslash\left\{\theta_{Z_{j}}\right\}\right)$ and $\left[L_{j}\left(u_{j}, y_{j}\right)-L_{j}\left(z_{j}, y_{j}\right)\right] \notin\left(-C_{j} \backslash\left\{\theta_{j}\right\}\right)$.

Then there exists $v=\left(v_{i}\right)_{i \in I} \in X$ such that for each $i \in I$,

$$
\left[L_{i}\left(u_{i}, y_{i}\right)-L_{i}\left(u_{i}, v_{i}\right)\right] \notin\left(-C_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)
$$

and

$$
\left[L_{i}\left(u_{i}, v_{i}\right)-L_{i}\left(y_{i}, v_{i}\right)\right] \notin\left(-C_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)
$$

for all $y_{i} \in X_{i}$.
Proof Put $X_{2 k-1}^{\prime}=X_{2 k}^{\prime}=X_{k}, C_{2 k-1}^{\prime}=C_{2 k}^{\prime}=C_{k}, L_{2 k-1}^{\prime}=L_{2 k}^{\prime}=L_{k}$ and $u_{2 k-1}^{\prime}=u_{2 k}^{\prime}=$ u_{k} for each $k \in I$. Let $J=\{1,2, \ldots, 2 n\}$. For each $i \in J$, let $Y_{i}^{\prime}=X_{i}^{\prime}$ and $X^{\prime}=Y^{\prime}=$ $\prod_{i \in J} X_{i}^{\prime}$. Then $u^{\prime}:=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{2 n}^{\prime}\right) \in X^{\prime}$. For each $i \in J$, define $F_{i}: X^{\prime} \times X_{i}^{\prime} \rightarrow Z_{i}$ by $F_{i}\left(x, y_{i}\right)=C_{i}^{\prime} \backslash\left\{\theta_{z_{i}}\right\}$. Thus

$$
H_{i}=\left\{x_{i}^{\prime} \in X_{i}^{\prime}: \theta_{Z_{i}} \notin F_{i}\left(u^{\prime}, x_{i}^{\prime}\right)\right\}=X_{i}^{\prime} .
$$

For each $i \in J$, let $T_{i}: X^{\prime} \multimap X_{i}^{\prime}$ by

$$
T_{i}(y)=H_{i}=X_{i}^{\prime} \text { for each } y \in X^{\prime} \Longleftrightarrow T_{i}^{-}\left(z_{i}\right)=X_{i}^{\prime} \text { for each } z_{i} \in X_{i}^{\prime} .
$$

Then for each $(i, y) \in J \times X^{\prime}, \operatorname{coT}_{i}(y) \subseteq H_{i}=X_{i}^{\prime}$ and for each $\left(i, z_{i}\right) \in J \times X_{i}^{\prime}, T_{i}^{-}\left(z_{i}\right)$ is open in X^{\prime}. For each $i \in J$, define $f_{i}: X^{\prime} \times X^{\prime} \times X_{i}^{\prime} \rightarrow Z_{i}$ by

$$
f_{i}\left(x, y, z_{i}\right)=L_{i}^{\prime}\left(x_{i}, y_{i}\right)-L_{i}^{\prime}\left(z_{i}, y_{i}\right),
$$

and define $g_{i}: X^{\prime} \times X^{\prime} \times X_{i}^{\prime} \rightarrow Z_{i}$ by

$$
g_{i}\left(x, y, z_{i}\right)=L_{i}^{\prime}\left(x_{i}, z_{i}\right)-L_{i}^{\prime}\left(x_{i}, y_{i}\right) .
$$

For each $k \in \mathbb{N}$, let $G_{2 k-1}=f_{k}$ and $G_{2 k}=g_{k}$. Then for each $i \in J, G_{i}: X^{\prime} \times X^{\prime} \times X_{i}^{\prime} \rightarrow Z_{i}$ is a map such that for each $y=\left(y_{i}\right)_{i \in I} \in X^{\prime}, G_{i}\left(u^{\prime}, y, y_{i}\right) \notin\left(-C_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)$ from (iii). For each $i \in J$, we claim that $G_{i}\left(u^{\prime}, y, \cdot\right)$ is C_{i}^{\prime}-quasiconvex for each $y \in X^{\prime}$. Let $z_{i}^{1}, z_{i}^{2} \in X_{i}^{\prime}$ and $\lambda \in[0,1]$. By the $\left\{\theta_{z_{i}}\right\}$-quasiconvexity of $L_{i}^{\prime}\left(x_{i}, \cdot\right)$, either

$$
L_{i}^{\prime}\left(x_{i}, \lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}\right)=L_{i}^{\prime}\left(x_{i}, z_{i}^{1}\right)
$$

or

$$
L_{i}^{\prime}\left(x_{i}, \lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}\right)=L_{i}^{\prime}\left(x_{i}, z_{i}^{2}\right) .
$$

By (ii), we have either

$$
L_{i}^{\prime}\left(\lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}, y_{i}\right)=L_{i}^{\prime}\left(z_{i}^{1}, y_{i}\right)
$$

or

$$
L_{i}^{\prime}\left(\lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}, y_{i}\right)=L_{i}^{\prime}\left(z_{i}^{2}, y_{i}\right) .
$$

Hence either

$$
\begin{aligned}
f_{i}\left(x, y, z_{i}^{1}\right) & =L_{i}^{\prime}\left(x_{i}, y_{i}\right)-L_{i}^{\prime}\left(z_{i}^{1}, y_{i}\right) \\
& =L_{i}^{\prime}\left(x_{i}, y_{i}\right)-L_{i}^{\prime}\left(\lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}, y_{i}\right) \\
& \subseteq f_{i}\left(x, y, \lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}\right)+C_{i}^{\prime}
\end{aligned}
$$

or

$$
f_{i}\left(x, y, z_{i}^{2}\right) \subseteq f_{i}\left(x, y, \lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}\right)+C_{i}^{\prime} .
$$

Also, we have either

$$
g_{i}\left(x, y, z_{i}^{1}\right) \subseteq g_{i}\left(x, y, \lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}\right)+C_{i}^{\prime}
$$

or

$$
g_{i}\left(x, y, z_{i}^{2}\right) \subseteq g_{i}\left(x, y, \lambda z_{i}^{1}+(1-\lambda) z_{i}^{2}\right)+C_{i}^{\prime} .
$$

So for each $i \in J, G_{i}\left(u^{\prime}, y, \cdot\right)$ is C_{i}^{\prime}-quasiconvex for each $y \in X^{\prime}$. Since for each $x_{i} \in$ $X_{i}, y_{i} \rightarrow L_{i}\left(x_{i}, y_{i}\right)$ is continuous, we have $f_{i}\left(u^{\prime}, y, z_{i}\right)=L_{i}^{\prime}\left(u_{i}^{\prime}, y_{i}\right)-L_{i}^{\prime}\left(z_{i}, y_{i}\right)$ and $g_{i}\left(u^{\prime}, y, z_{i}\right)=L_{i}^{\prime}\left(u_{i}^{\prime}, z_{i}\right)-L_{i}^{\prime}\left(u_{i}^{\prime}, y_{i}\right)$ are 1.s.c. for each $z_{i} \in X_{i}^{\prime}$. Hence for each $i \in J$, $G_{i}\left(u^{\prime}, \cdot, z_{i}\right)$ is 1.s.c. for each $z_{i} \in X_{i}^{\prime}$. By Theorem 3.3, there exists $v=\left(v_{i}\right)_{i \in J} \in X^{\prime}$ such that for each $i \in J, G_{i}\left(u^{\prime}, v, y_{i}\right) \notin\left(-C_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)$ for all $y_{i} \in X_{i}^{\prime}$, which is equivalent with for each $i \in I$,

$$
\left[L_{i}\left(u_{i}, y_{i}\right)-L_{i}\left(u_{i}, v_{i}\right)\right] \notin\left(-C_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)
$$

and

$$
\left[L_{i}\left(u_{i}, v_{i}\right)-L_{i}\left(y_{i}, v_{i}\right)\right] \notin\left(-C_{i} \backslash\left\{\theta_{Z_{i}}\right\}\right)
$$

for all $y_{i} \in X_{i}$.
The following new system of minimax theorem is immediate from Theorem 4.1

Theorem 4.2 (System of minimax theorem) Let $n \in \mathbb{N}$ and $I=\{1,2, \ldots, n\}$. For each $i \in$ I, let X_{i} be a nonempty closed convex subset of a Hausdorff t.v.s. V_{i} and $L_{i}: X_{i} \times X_{i} \rightarrow \mathbb{R}$ a function. Let $X=\prod_{i \in I} X_{i}$ and let $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ be given. Suppose that
(i) for each $x_{i} \in X_{i}, y_{i} \rightarrow L_{i}\left(x_{i}, y_{i}\right)$ is continuous and $\{0\}$-quasiconvex;
(ii) for each $y_{i} \in X_{i}, x_{i} \rightarrow L_{i}\left(x_{i}, y_{i}\right)$ is $\{0\}$-quasiconvex-like;
(iii) $L_{i}\left(u_{i}, y_{i}\right) \geq L_{i}\left(y_{i}, y_{i}\right)$ for all $y_{i} \in X_{i}$;
(iv) there exist a nonempty compact subset K of X and a nonempty compact convex subset M_{i} of X_{i} for each $i \in I$ such that for each $y=\left(y_{i}\right)_{i \in I} \in X \backslash K$ there exist $j \in I$ and $z_{j} \in M_{j}$ such that $L_{j}\left(u_{j}, z_{j}\right) \geq L_{j}\left(u_{j}, y_{j}\right)$ and $L_{j}\left(u_{j}, y_{j}\right) \geq L_{j}\left(z_{j}, y_{j}\right)$.

Then for each $i \in I, \sup _{x_{i} \in X_{i}} \inf _{y_{i} \in X_{i}} L_{i}\left(x_{i}, y_{i}\right)=\inf _{y_{i} \in X_{i}} \sup _{x_{i} \in X_{i}} L_{i}\left(x_{i}, y_{i}\right)$.
Proof For each $i \in I$, let $C_{i}=[0, \infty)$. By Theorem 4.1, there exists $v=\left(v_{i}\right)_{i \in I} \in X$ such that for each $i \in I$,

$$
L_{i}\left(u_{i}, y_{i}\right) \geq L_{i}\left(u_{i}, v_{i}\right)
$$

and

$$
L_{i}\left(u_{i}, v_{i}\right) \geq L_{i}\left(y_{i}, v_{i}\right)
$$

for all $y_{i} \in X_{i}$. It follows that

$$
\sup _{x_{i} \in X_{i}} \inf _{y_{i} \in X_{i}} L_{i}\left(x_{i}, y_{i}\right) \geq L_{i}\left(u_{i}, v_{i}\right) \geq \inf _{y_{i} \in X_{i}} \sup _{x_{i} \in X_{i}} L_{i}\left(x_{i}, y_{i}\right)
$$

and hence

$$
\sup _{x_{i} \in X_{i}} \inf _{y_{i} \in X_{i}} L_{i}\left(x_{i}, y_{i}\right)=\inf _{y_{i} \in X_{i}} \sup _{x_{i} \in X_{i}} L_{i}\left(x_{i}, y_{i}\right) .
$$

The following results are existence theorems of feasible points for mathematical programs with equilibrium constraints.

Theorem 4.3 For each $i \in I$, let $f_{i}: X \times Y_{i} \rightarrow(-\infty, \infty]$ and $g_{i}: X \times Y \times Y_{i} \rightarrow$ $(-\infty, \infty]$ be functions, $T_{i}: Y \multimap Y_{i}$ be a multivalued map with nonempty values, and let $H_{i}=\left\{y_{i} \in Y_{i}: f_{i}\left(u, y_{i}\right) \leq 0\right\}$, where $y=\left(y_{i}\right)_{i \in I} \in Y$. Let $u \in X$. For each $i \in I$, suppose that there exists $w_{i} \in Y_{i}$ such that $f_{i}\left(u, w_{i}\right) \leq 0$. For each $i \in I$, suppose that
(i) $f_{i}(u, \cdot)$ is l.s.c.;
(ii) for each $y=\left(y_{i}\right)_{i \in I} \in Y, g_{i}\left(u, y, y_{i}\right) \geq 0$;
(iii) for each $y \in Y, \operatorname{co}_{i}(y) \subseteq H_{i}$ and for each $z_{i} \in Y_{i}, T_{i}^{-}\left(z_{i}\right)$ is open in Y;
(iv) $g_{i}(u, \cdot, \cdot)$ is u.s.c. and for each $y \in Y, g_{i}(u, y, \cdot)$ is quasiconvex;
(v) there exist a nonempty compact subset K of Y and a nonempty compact convex subset M_{i} of Y_{i} for each $i \in I$ such that for each $y \in Y \backslash K$ there exist $j \in I$ and $z_{j} \in M_{j} \cap T_{j}(y)$ such that $g_{j}\left(u, y, z_{j}\right)<0$.

Let $h: X \times Y \multimap Z_{0}$ be a multivalued map such that $y \multimap h(u, y)$ is an u.s.c. multivalued map with nonempty compact values, where Z_{0} is a real t.v.s. ordered by a proper closed convex cone C in Z_{0}. Then there exists an optimal solution to the following problem (\mathcal{P}):

$$
\begin{align*}
& \qquad \operatorname{Min}_{C} h(u, y) \\
& \text { object to } y \in Y, f_{i}\left(u, y_{i}\right) \leq 0 \text { and } g_{i}\left(u, y, z_{i}\right) \geq 0 \tag{P}\\
& \text { for all } z_{i} \in T_{i}(y) \text { and for all } i \in I .
\end{align*}
$$

Proof For each $i \in I$, let

$$
N_{i}=\left\{y \in Y: f_{i}\left(u, y_{i}\right) \leq 0 \text { and } g_{i}\left(u, y, z_{i}\right) \geq 0 \text { for all } z_{i} \in T_{i}(y)\right\} .
$$

For each $i \in I$, let $y_{i} \in \operatorname{cl} N_{i}$. Then there exists a net $\left\{y_{i}^{\alpha}\right\}_{\alpha \in \Lambda}$ in N_{i} such that $y_{i}^{\alpha} \rightarrow y_{i}$. Hence $f_{i}\left(u, y_{i}^{\alpha}\right) \leq 0$ and $g_{i}\left(u, y_{i}^{\alpha}, z_{i}\right) \geq 0$ for all $z_{i} \in T_{i}\left(y_{i}^{\alpha}\right)$. Let $a_{i} \in T_{i}(y)$. Since $T_{i}^{-}\left(z_{i}\right)$ is open in Y for each $z_{i} \in Y_{i}, T_{i}$ is 1.s.c. Hence there exists a net $\left\{a_{i}^{\alpha}\right\}_{\alpha \in \Lambda}$ with $a_{i}^{\alpha} \rightarrow a_{i}$ such that $a_{i}^{\alpha} \in T_{i}\left(y_{i}^{\alpha}\right)$. So $f_{i}\left(u, y_{i}^{\alpha}\right) \leq 0$ and $g_{i}\left(u, y_{i}^{\alpha}, a_{i}^{\alpha}\right) \geq 0$. By (i), we have $f_{i}\left(u, y_{i}\right) \leq 0$. By (iv), we have $g_{i}\left(u, y_{i}, a_{i}\right) \geq 0$. Hence $y_{i} \in N_{i}$ and N_{i} is a closed set in Y. Let $N=\cap_{i \in I} N_{i}$. Then N is closed in Y. Applying Theorem 3.2, $N \neq \emptyset$. By (v), it is easy to see that $N \subseteq K$, where K is a nonempty compact subset of Y in condition (v). Hence N is a nonempty compact subset of Y. Since the map $y \multimap h(u, y)$ is an u.s.c. multivalued map with nonempty compact values, it follows from Lemma 2.3 that $h(u, N)$ is compact. Then by Lemma 2.2 that $\operatorname{Min}_{C} h(u, N) \neq \emptyset$. That is there exists a solution to the problem (\mathcal{P}). The proof is completed.

Theorem 4.4 In Theorem 4.3, if we assume that $h: X \times Y \rightarrow(-\infty, \infty]$ is a l.s.c. function, then there exists an optimal solution to the problem (\mathcal{P}) as in Theorem 4.3

Proof Let N be the same as in the proof of Theorem 4.3 By the lower semicontinuity of h and the compactness of N, there exists $v \in N$ such that $h(u, v)=\min h(u, N)$. The proof is completed.

Let X be a t.v.s. Recall that a function $p: X \times X \rightarrow(-\infty, \infty]$ is called a quasi-distance [17] on X if the following are satisfied:
(QD1) $p(x, x) \geq 0$ for all $x \in X$;
(QD2) $p(x, z) \leq p(x, y)+p(y, z) \quad$ for any $x, y, z \in X$;
(QD3) for any $x \in X, p(x, \cdot)$ is convex and l.s.c.;
($Q D 4$) for any $y \in X, p(\cdot, y)$ is u.s.c.
Lin and Du's variant of Ekeland's variational principle [17] for quasi-distances in a Hausdorff t.v.s. can be easily given by Theorem 3.2

Theorem 4.5 ([17], Theorem 4.1) Let X be a Hausdorff t.v.s. Let $f: X \rightarrow(-\infty, \infty]$ be a l.s.c. and convex function and $p: X \times X \rightarrow(-\infty, \infty]$ be a quasi-distance. Let $u \in X$ with $p(u, u)=0$ and $\varepsilon>0$. Suppose that there exist a nonempty compact subset K of X and a nonempty compact convex subset M of X such that for each $y \in X \backslash K$ there exists $z \in M$ such that $\varepsilon p(u, z) \leq f(u)-f(z)$ and $\varepsilon p(y, z)<f(y)-f(z)$. Then there exists $v \in X$ such that
(i) $\varepsilon p(u, v) \leq f(u)-f(v)$;
(ii) $\varepsilon p(v, x) \geq f(v)-f(x)$ for all $x \in X$.

Proof Since p is a quasi-distance, εp is also a quasi-distance. Define H and $A: X \multimap X$ by

$$
H=\{x \in X: \varepsilon p(u, x) \leq f(u)-f(x)\}
$$

and

$$
A(x)=\{y \in X: \varepsilon p(x, y)<f(x)-f(y)\},
$$

respectively, and let $T: X \multimap X$ be defined by

$$
\begin{gathered}
T(x)=H \text { for all } x \in X \\
\Longleftrightarrow T^{-}(z)= \begin{cases}X, & \text { if } z \in H \\
\emptyset, & \text { if } z \in X \backslash H .\end{cases}
\end{gathered}
$$

It is not hard to verify that all the conditions of Theorem 3.2 are satisfied. Thus there exists $v \in X$ such that
(i) $\varepsilon p(u, v) \leq f(u)-f(v)$;
(ii) $\varepsilon p(v, x) \geq f(v)-f(x)$ for all $x \in H$.

For any $x \in X \backslash H$, since

$$
\begin{aligned}
\varepsilon[p(u, v)+p(v, x)] & \geq \varepsilon p(u, x) \\
& >f(u)-f(x) \\
& \geq \varepsilon p(u, v)+f(v)-f(x),
\end{aligned}
$$

it follows that $\varepsilon p(v, x)>f(v)-f(x)$ for all $x \in X \backslash H$. Therefore $\varepsilon p(v, x) \geq f(v)-f(x)$ for all $x \in X$. The proof is completed.

5 Conclusions

In the present paper, we first introduce the new mathematical model about HIDS which contains several important problems (see Sect. 1) as special cases in the literatures. We establish sufficient conditions for the existence of the solution of HIDS and study mixed types of systems of generalized quasivariational inclusions and disclusions problems and systems of generalized vector quasiequilibrium problems. Some applications to the existence theorems of feasible points for various mathematical programs with variational constraints or equilibrium constraints, the existence theorems of system of vector saddle point and system of minimax theorem are also given. Our method would be useful to improve and generalize a number of other known results; see e.g., [1,2,6-11,13-15, 17-21].

Acknowledgments The author wishes to express his hearty thanks to the anonymous referees for their helpful suggestions and comments.

References

1. Adly, S.: Perturbed algorithms and sensitivity analysis for a general class of variational inclusions. J. Math. Anal. Appl. 201, 609-630 (1996)
2. Ahmad, R., Ansari, Q.H., Irfan, S.S.: Generalized variational inclusions and generalized resolvent equations in Banach spaces. Comput. Math. Appl. 49, 1825-1835 (2005)
3. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin (1999)
4. Aubin, J.P., Cellina, A.: Differential Inclusion. Springer, Berlin (1994)
5. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994)
6. Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector Optimization. Springer, Berlin (2005)
7. Deguire, P., Tan, K.K., Yuan, G.X.Z.: The study of maximal elements, fixed point for Ls-majorized mappings and the quasi-variational inequalities in product spaces. Nonlinear Anal. 37, 933-951 (1999)
8. Ding, X.P.: Perturbed proximal point algorithm for generalized quasivariational inclusions. J. Math. Anal. Appl. 210, 88-101 (1997)
9. Fukuslima, M., Pang, J.S.: Some feasible issues in mathematical programs with equilibrium constraints. SIMA J. Optim. 8, 673-681 (1998)
10. Huang, N.J.: A new class of generalized set-valued implicit variational inclusions in Banach spaces with applications. Comput. Math. Appl. 41(718), 937-943 (2001)
11. Isac, G., Bulavsky, V.A., Kalashnikov, V.V.: Complementarity, Equilibrium, Efficiency and Economics. Kluwer, Dordrecht (2002)
12. Jahn, J.: Vector Optimization. Springer, Berlin (2004)
13. Lin, L.-J.: Mathematical programming with systems of equilibrium constraints. J. Glob. Optim. 37, 275286 (2007)
14. Lin, L.-J.: Systems of generalized quasivariational inclusions problems with applications to variational analysis and optimization problems. J. Glob. Optim. 38, 21-39 (2007)
15. Lin, L.-J.: Variational inclusions problems with applications to Ekeland's variational principle, fixed point and optimization problems. J. Glob. Optim. 39, 509-527 (2007)
16. Lin, L.-J., Du, W.-S.: Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360-370 (2006)
17. Lin, L.-J., Du, W.-S.: Systems of equilibrium problems with applications to new variants of Ekeland's variational principle, fixed point theorems and parametric optimization problems. J. Glob. Optim. 40, 663677 (2008)
18. Lin, L.-J., Wang, S.-Y., Chuang, C.-S.: Existence theorems of systems of variational inclusion problems with applications. J. Glob. Optim. 40, 751-764 (2008)
19. Lin, L.-J., Tu, C.-I.: The studies of systems of variational inclusions problems and variational disclusions problems with applications. Nonlinear Anal. 69, 1981-1998 (2008)
20. Luc, D.T.: Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1989)
21. Mordukhovich, B.S.: Equilibrium problems with equilibrium constraints via multiobjective optimization. Optim. Methods Softw. 19, 479-492 (2004)
22. Rubinov, A.M.: Sublinear operators and their applications. Russ. Math. Surv. 32(4), 115-175 (1977)
23. Tan, N.X.: Quasi-variational inequalities in topological linear locally convex Hausdorff spaces. Mathematicsche Nachrichten 122, 231-245 (1985)

[^0]: This research was supported by the National Science Council of the Republic of China.

[^1]: W.-S. Du (\boxtimes)

 Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan e-mail: wsdu@nknucc.nknu.edu.tw; fixdws@yahoo.com.tw

